4.6 Article

Optical Properties of Guanine Nanowires: Experimental and Theoretical Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 34, Pages 14339-14346

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp102106d

Keywords

-

Funding

  1. Nano-Sciences Ile-de-France [IF-06-357/R-9]
  2. Laser Lab Europe
  3. [COST Action MP0802]

Ask authors/readers for more resources

Long nanowires formed by ca. 800 guanine tetrads (G4-wires) are studied in phosphate buffer containing sodium cations. Their room temperature optical properties are compared to those of the monomeric chromophore 2-deoxyguanine monophosphate (dGMP). When going from dGMP to G4-wires, both the absorption and the fluorescence spectra change. Moreover, the fluorescence quantum yield increases by a factor of 7.3 whereas the average fluorescence lifetime increases by more than 2 orders of magnitude, indicating emission associated with weakly allowed transitions. The behavior of G4-wires is interpreted in the light of a theoretical study performed in the frame of the exciton theory combining data from molecular dynamics and quantum chemistry. These calculations, carried out for a quadruplex composed of three tetrads, reveal the existence of various exciton states having different energies and oscillator strengths. The degree of delocalization of the quadruplex Franck-Condon excited states is larger than those found for longer duplexes following the same methodology. The slower excited-state relaxation in G4-wires compared to dGMP is explained by emission from exciton states, possibly limited on individual tetrads, whose coherence is preserved by the reduced mobility of guanines due to multiple Hoogsteen hydrogen bonds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available