4.6 Article

Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silica-Alumina-Supported Pd Nanoparticles: A Multitechnical Approach

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 113, Issue 24, Pages 10485-10492

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp9023712

Keywords

-

Ask authors/readers for more resources

In this work we used several complementary techniques (TEM, TPR, CO chemisorption, EXAFS and FTIR spectroscopy) to understand the effects of the activation temperature and activation atmosphere (air or H,) on the particle size distribution, the fraction, and the type of exposed surface sites of Pd nanoparticles supported on a high surface area SiO2-Al2O3 (SA) support. Pd particle distribution has been carefully determined by a high statistic TEM study, from which the cuboctahedral-like shape of the metal particles is demonstrated. Assuming a model of perfect cuboctahedral particles, from the TEM particle size distribution we estimated the expected average Pd first shell coordination number. This value is slightly larger than that directly found by EXAFS owing to the fraction of very small Pd particles (d < 6-8 angstrom) that basically escape TEM detection. The game geometrical model allows prediction, from TEM particle size distribution, of the metal dispersion observed by CO chemisorption (S/V-Chemi). The S/V-Chemi value drops significantly upon increasing the H,reduction temperature. According to TEM, the sintering process can account only for a very small fraction of the S/V-Chemi decrease, suggesting an important poisoning of the potentially available Pd surface. This hypothesis is supported by a parallel experiment of thermal decomposition at the same temperature (in absence of HA showing a S/V-Chemi value almost unchanged. FTIR spectroscopy of adsorbed CO, probing the nature of the Pd surface available for adsorption, confirms the hypothesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available