4.6 Article

Transition of Molecule Orientation during Adsorption of Terephthalic Acid on Rutile TiO2(110)

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 113, Issue 40, Pages 17471-17478

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp9052117

Keywords

-

Funding

  1. German Research Foundation (DFG) [SFB 558]
  2. BMBF [05ESXBA/5]
  3. Emmy Noether program

Ask authors/readers for more resources

The coverage-dependent mode of adsorption of terephthalic acid [C6H4(COOH)(2), TPA] on rutile TiO2(110) was investigated by means of noncontact atomic force microscopy (NC-AFM) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy under ultrahigh vacuum conditions at room temperature. Individual molecules are observed to adsorb in an disordered, flat-lying geometry at low coverages up to similar to 0.3 monolayer (ML). The molecules are immobile at room temperature. implying a diffusion barrier larger than 0.8 eV. This rather high value might be explained by anchoring to surface defect sites. A transition from flat-lying to upright-oriented molecules is revealed by NEXAFS when saturation coverage is achieved. High-resolution NC-AFM images reveal two different Structures at coverages between similar to 0.8 and 1 ML: (i) a well-ordered (2 x 1) structure and (ii) a structure of single and paired rows oriented along the [001] crystallographic direction. The latter structure might originate from a pairwise interaction of two neighboring molecules through the top carboxyl groups. Further increase in the exposure results in it saturation of the corresponding signal in the NEXAFS spectra, revealing that the growth of TPA oil TiO2(110) at room temperature is self-limiting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available