4.5 Article

Sequence-Dependent Base-Stacking Stabilities Guide tRNA Folding Energy Landscapes

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 117, Issue 42, Pages 12943-12952

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp402114p

Keywords

-

Funding

  1. National Science Foundation [CBET-1232724]
  2. Wake Forest University Center for Molecular and Cellular Communication

Ask authors/readers for more resources

The folding of bacterial tRNAs with disparate sequences has been observed to proceed in distinct folding mechanisms despite their structural similarity. To explore the folding landscapes of tRNA, we performed ion concentration-dependent coarse-grained TIS model MD simulations of several E. coli tRNAs to compare their thermodynamic melting profiles to the classical absorbance spectra of Crothers and co-workers. To independently validate our findings, we also performed atomistic empirical force field MD simulations of tRNAs, and we compared the base-to-base distances from coarse-grained and atomistic MD simulations to empirical base-stacking free energies. We then projected the free energies to the secondary structural elements of tRNA, and we observe distinct, parallel folding mechanisms whose differences can be inferred on the basis of their sequence-dependent base-stacking stabilities. In some cases, a premature, nonproductive folding intermediate corresponding to the Psi hairpin loop must backtrack to the unfolded state before proceeding to the folded state. This observation suggests a possible explanation for the fast and slow phases observed in tRNA folding kinetics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available