4.5 Article

The Power Stroke Driven by ATP Binding in CFTR As Studied by Molecular Dynamics Simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 117, Issue 1, Pages 83-93

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp308315w

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [20118006, 23118714]
  2. Japan Society for the Promotion of Science [22590212]
  3. Keio Gijuku Academic Development Funds
  4. Grants-in-Aid for Scientific Research [23570198, 20118001, 20118006, 22590212] Funding Source: KAKEN

Ask authors/readers for more resources

Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a closed-apo conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available