4.5 Article

Computational Approach for Ranking Mutant Enzymes According to Catalytic Reaction Rates

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 113, Issue 11, Pages 3579-3583

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp810363k

Keywords

-

Funding

  1. National Institutes of Health (NIH) [GM56207]
  2. Defense Advanced Research Projects Agency (DARPA)

Ask authors/readers for more resources

A computationally efficient approach for ranking mutant enzymes according to the catalytic reaction rates is presented. This procedure requires the generation and equilibration of the mutant structures, followed by the calculation of partial free energy curves using an empirical valence bond potential in conjunction with biased molecular dynamics simulations and umbrella integration. The individual steps are automated and optimized for computational efficiency. This approach is used to rank a series of 15 dihydrofolate reductase mutants according to the hydride transfer reaction rate. The agreement between the calculated and experimental changes in the free energy barrier upon mutation is encouraging. The computational approach predicts the correct direction of the change in free energy barrier for all mutants, and the correlation coefficient between the calculated and experimental data is 0.82. This general approach for ranking protein designs has implications for protein engineering and drug design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available