4.6 Article

Fundamental Relation between Molecular Geometry and Real-Space Topology. Combined AIM, ELI-D, and ASF Analysis of Hapticities and Intramolecular Hydrogen-Hydrogen Bonds in Zincocene-Related Compounds

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 118, Issue 24, Pages 4351-4362

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp503667g

Keywords

-

Ask authors/readers for more resources

Despite numerous advanced and widely distributed bonding theories such as MO, VB, NBO, AIM, and ELF/ELI-D, complex modes of bonding such as M-Cp*((R)) interactions (hapticities) in asymmetrical metallocenes or weak intramolecular interactions (e.g., hydrogen hydrogen (H center dot center dot center dot H) bonds) still remain a challenge for these theories in terms of defining whether or not an atom atom interaction line (a chemical bond) should be drawn. In this work the intramolecular Zn C-Cp*(R) (R = Me, (CH2)(2)NMe2, and (CH2)(3)NMe2) and H.-H connectivity of a systematic set of 12 zincocene-related compounds is analyzed in terms of AIM and ELI-D topology combined with the recently introduced aspherical stockholder fragment (ASF) surfaces. This computational analysis unravels a distinct dependency of the AIM and ELI-D topology against the molecular geometry for both types of interactions, which confirms and extends earlier findings on smaller sets of compounds. According to these results the complete real-space topology including strong, medium, and weak interactions of very large compounds such as proteins may be reliably predicted by sole inspection of accurately determined molecular geometries, which would on the one hand afford new applications (e.g., accurate estimation of numbers, types, and strengths of intra- and intermolecular interactions) and on the other hand have deep implications on the significance of the method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available