4.6 Article

Bifurcated Hydrogen Bond in Lithium Nitrate Trihydrate Probed by ab Initio Molecular Dynamics

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 116, Issue 9, Pages 2147-2153

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp2120115

Keywords

-

Ask authors/readers for more resources

The hydrogen-bond dynamics of lithium nitrate trihydrate has been studied by a combined approach based on ab initio molecular dynamics simulations and wavelet analysis. The simultaneous bifurcated interaction between one hydrogen atom of water molecules and two oxygen atoms of nitrate ions is the pivotal feature of the crystal structure: this bifurcated interaction has deep effects on the O-H stretching region of the vibrational spectrum. The structural, dynamic, spectroscopic, and electronic properties of the bifurcated hydrogen bond have been investigated computationally, elucidating at the molecular level the differences with weak and strong hydrogen bonds present in the crystal. These studies corroborate the very recent IR experiments performed on the lithium nitrate trihydrate crystal, offering new perspectives to interpreting the vibrational spectra. In fact, this approach allows obtaining two-dimensional plots, which summarize the essential features of both the hydrogen-bond network and IR spectra, resulting in a peculiar signature of the bifurcated interaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available