4.6 Article

Simulations of the Temperature Dependence of Amide I Vibration

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 115, Issue 1, Pages 30-34

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp1084839

Keywords

-

Funding

  1. Czech Academy of Sciences [M200550902, IAA400550702]
  2. Grant Agency of the Czech Republic [P208/10/P356]
  3. National Science Foundation [CAREER 0846140]
  4. Direct For Biological Sciences
  5. Div Of Molecular and Cellular Bioscience [0846140] Funding Source: National Science Foundation

Ask authors/readers for more resources

For spectroscopic studies of peptide and protein thermal denaturation it is important to single out the contribution of the solvent to the spectral changes from those originated in the molecular structure. To obtain insights into the origin and size of the temperature solvent effects on the amide I spectra, combined molecular dynamics and density functional simulations were performed with the model N-methylacetamide molecule (NMA). The computations well reproduced frequency and intensity changes previously observed in aqueous NMA solutions. An empirical correction of vacuum frequencies in single NMA molecule based on the electrostatic potential of the water molecules provided superior results to a direct density functional average obtained for a limited number of solute-solvent clusters. The results thus confirm that the all-atom quantum and molecular mechanics approach captures the overall influence of the temperature dependent solvent properties on the amide I spectra and can improve the accuracy and reliability of molecular structural studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available