4.6 Article

Dynamics of vibrational overtone excited pyruvic acid in the gas phase: Line broadening through hydrogen-atom chattering

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 112, Issue 32, Pages 7321-7331

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp803225c

Keywords

-

Ask authors/readers for more resources

The dynamics of overtone-excited pyruvic acid (PA) is studied using a combination of experimental and theoretical methods. It is experimentally observed that high overtone excitation of the OH-stretching mode of PA in the gas phase leads to a unimolecular decarboxylation reaction. An RRKM analysis of the rate is consistent with previous experiments for the thermal reaction but is inconsistent with the present overtone chemistry; from this it is concluded that the overtone-induced reaction is likely to be a direct reaction. Using a Fourier transform infrared spectrometer and a cavity ring-down spectrometer, the spectrum for the OH-stretch fundamental and overtone transitions is measured. We assign two conformers of PA in the spectrum, the Tc and Tt, corresponding to distinct orientations of the OH-group. The spectral peaks for the Tc-conformer broaden dramatically at the third and fourth overtones while those of the Tt-conformer remain relatively narrow. Using a three-mode quantum mechanical model for the vibrational states, the line positions and intensities are well reproduced by theory. The line widths, and the associated dynamical interpretation, are provided by a direct dynamics calculation, where the potential is computed on-the-fly and all degrees of freedom are included. It is found that the line broadening is due to the onset of H-atom chattering between the two O-atoms, an effect that occurs for the Tc-conformer but not the Tt-conformer. This H-atom-transfer process is the first step of the decarboxylation reaction mechanism, which subsequently involves breaking the C-C bond. The theoretical and experimental line widths agree but do not correspond to the full reaction time which is much longer than the initial chattering step.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available