4.6 Article

The effect of porphyrin structure on binding to human serum albumin by fluorescence spectroscopy

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2009.08.009

Keywords

Porphyrins; Fluorescence; Singlet excited state; Host-guest interactions; PDT

Funding

  1. Monticello College Foundation
  2. Iowa College Foundation

Ask authors/readers for more resources

The efficacy of porphyrin binding to human serum albumin (HSA) is critical to clinical use in photodynamic therapy (PDT). Several porphyrins were utilized to measure the effect of porphyrin structure on its binding to HSA. Two categories of porphyrins were utilized: porphyrins with a hydrophobic and hydrophilic side: Protoporphyrin IX (PPIX), Protoporphyrin IX dimethylester (PPIXDE), and Chlorin er, (Ce6) and porphyrins with hydrophilic substituents on both sides: Hematoporphyrin IX (Hme), Hematoporphyrin IX dimethylester (HmeDE), and Deuteroporphyrin IX dimethylester (DPIXEG). The following methods were used for the analysis: Stern-Volmer quenching, fluorescence lifetimes, anisotropy, fluorescence binding, and homogeneous studies. The results indicate that PPIX, PPIXDE, and Ce6 bind to HSA efficiently, evidence that porphyrins bind strongly to HSA if they have a hydrophobic and hydrophilic side. Hme is thought to bind to HSA but likely to a lesser degree than the aforementioned three porphyrins. HmeDE and DPIXEG seem not to bind to HSA probably due to the lack of hydrophobic substituents. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available