4.6 Article

TiO2-carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2008.08.007

Keywords

TiO2; Carbon nanotube; Heterojunction; Photocatalysis

Funding

  1. National Nature Science Foundation [20337020]
  2. National Science Fund for Distinguished Young Scholars of China [20525723]

Ask authors/readers for more resources

TiO2-carbon nanotube (CNT) heterojunction arrays on Ti substrate were fabricated by a two-step thermal chemical vapor deposition (CVD) method. CNT arrays were first grown on Ti substrate vertically, and then a TiO2 layer, whose thickness could be controlled by varying the deposition time, was deposited on CNTs. Measured by electrochemical impedance spectroscopy (EIS), the thickness of the TiO2 layercould affect the photoresponse ability significantly. About 100 nm thickness of the TiO2 layer proved to be best for efficient charge separation among the tested samples. The optimized TiO2-CNT heterojunction arrays displayed apparently higher photoresponse capability than that of TiO2 nanotube arrays which was confirmed by Surface photovoltage (SPV) technique based on Kelvin probe and EIS. In the photocatalytic experiments, the kinetic constants of phenol degradation with TiO2-CNT heterojunctions and TiO2 nanotubes were 0.75 h(-1) (R-2 = 0.983) and 0.39 h(-1) (R-2 = 0.995), respectively. At the same time, 53.7% of total organic carbon (TOC) was removed with TiO2-CNT heterojunctions, while the removal of TOC was only 16.7% with TiO2 nanotubes. These results demonstrate the super capability of the TiO2-CNT heterojunction arrays in photocatalysis with comparison to TiO2-only nanomaterial. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Environmental Sciences

Effects of ferroferric oxide on azo dye degradation in a sulfate-containing anaerobic reactor: From electron transfer capacity and microbial community

Zhen Jin, Zhiqiang Zhao, Lianfu Liang, Yaobin Zhang

Summary: The addition of Fe3O4 into anaerobic reactors treating sulfate-containing wastewater with azo dye AO7 has been shown to enhance system performance, increase the production of degradation intermediates, and enrich iron-reducing bacteria capable of degrading azo dye.

CHEMOSPHERE (2022)

Article Engineering, Environmental

Independent of direct interspecies electron transfer: Magnetite-mediated sulphur cycle for anaerobic degradation of benzoate under low-concentration sulphate conditions

Yang Li, Chunlei Dong, Yuan Li, Wenqi Nie, Mingwei Wang, Cheng Sun, Lianfu Liang, Zhiqiang Zhao, Yaobin Zhang

Summary: The study found that magnetite promotes the anaerobic degradation of aromatic compounds under low-concentration sulphate conditions, participating in the process of benzoate degradation coupled to sulphate reduction.

JOURNAL OF HAZARDOUS MATERIALS (2022)

Article Environmental Sciences

Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds

Ting-ting Zhu, Wen-xia Lai, Yao-Bin Zhang, Yi-wen Liu

Summary: The Feammox process plays a crucial role in the natural nitrogen cycle, but has been rarely investigated in the field of wastewater treatment. This study explored the potential of anaerobic ammonium removal coupled with organics to assess the Feammox process for conventional wastewater treatment. Results showed that the Fe2O3 group had the highest efficiency in ammonium removal, while organics significantly inhibited the Feammox process.

SCIENCE OF THE TOTAL ENVIRONMENT (2022)

Article Engineering, Environmental

Improving the Performance of the Lamellar Reduced Graphene Oxide/Molybdenum Sulfide Nanofiltration Membrane through Accelerated Water-Transport Channels and Capacitively Enhanced Charge Density

Jiajian Xing, Haiguang Zhang, Gaoliang Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan

Summary: By incorporating molybdenum sulfide (MoS2) nanosheets and applying external electrical assistance, both the 2D channel and charge density of reduced graphene oxide (rGO) membranes were regulated to enhance water flux and salt rejection. The resulting rGO/MoS2 membranes exhibited expanded nanochannels, resulting in significantly increased water permeance. In addition, the high capacitance and negative potential of the membranes contributed to improved rejection rates for NaCl and Na2SO4 ions. This study provides new insights for the design of membranes with high water flux and salt rejection efficiency.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Multidisciplinary Sciences

Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents

Peike Cao, Xie Quan, Xiaowa Nie, Kun Zhao, Yanming Liu, Shuo Chen, Hongtao Yu, Jingguang G. G. Chen

Summary: The authors report a scalable cobalt single-site catalyst for hydrogen peroxide synthesis at industrial-relevant currents in acidic, neutral or alkaline electrolyte, providing a sustainable alternative to traditional anthraquinone technology.

NATURE COMMUNICATIONS (2023)

Review Chemistry, Multidisciplinary

Carbon nanomaterial-based membranes for water and wastewater treatment under electrochemical assistance

Xinfei Fan, Gaoliang Wei, Xie Quan

Summary: Membrane separation is widely used in water and wastewater treatment due to its cost-effectiveness, ease of operation, and high efficiency. However, current membranes face challenges in balancing selectivity and permeability, as well as dealing with membrane fouling. Recent studies have focused on developing high-performance membranes based on carbon nanomaterials, such as carbon nanotubes and graphene, to improve water and wastewater treatment. These carbon nanomaterial-based membranes demonstrate enhanced permselectivity and fouling resistance under electrochemical assistance, thanks to their good electrical conductivity. This review summarizes the progress in the preparation, mechanisms, and applications of electroconductive nanocarbonaceous membranes for water purification and wastewater treatment, aiming to enhance the fundamental understanding of combining membrane separation and electrochemistry. The review covers methods for preparing electroconductive membranes, such as carbon nanotube membranes and graphene membranes, as well as the underlying mechanisms for the improved permselectivity, antifouling, and regeneration performance achieved through electrochemical processes. The review also discusses practical limitations of membrane/electrochemistry systems and proposes possible solutions.

ENVIRONMENTAL SCIENCE-NANO (2023)

Article Chemistry, Physical

Oxygen vacancies-driven nonradical oxidation pathway of catalytic ozonation for efficient water decontamination

Lanlan Liang, Peike Cao, Xin Qin, Shuai Wu, Haokun Bai, Shuo Chen, Hongtao Yu, Yan Su, Xie Quan

Summary: Developing efficient and interference-tolerant catalysts for practical use in catalytic ozonation process is challenging. In this study, a surface Vo-rich catalyst was prepared by doping Co into zinc ferrite spinel, showing efficient mineralization of recalcitrant organic pollutants. The removal of contaminants was mainly attributed to nonradical-based oxygen species, *O, rather than traditional hydroxyl radicals, •OH. The Vo-driven nonradical catalysis exhibited high resistance to coexisting ions and excellent performance in actual wastewater treatment, providing a novel strategy for efficient mineralization of pollutants in complicated water matrices.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Engineering, Environmental

Boosting the selectivity and efficiency of nitrate reduction to ammonia with a single-atom Cu electrocatalyst

Xueyang Zhao, Qin Geng, Fan Dong, Kun Zhao, Shuo Chen, Hongtao Yu, Xie Quan

Summary: Electrochemically reducing nitrate to ammonia is an efficient method to address nitrate pollution. However, controlling the selectivity and kinetics of ammonia production remains a challenge. In this study, a single-atom Cu catalyst was developed for selective and efficient nitrate reduction, achieving high Faradic efficiency and ammonia selectivity. DFT calculations revealed the underlying mechanism, demonstrating the superiority of the single-atom Cu catalyst over Cu nanoparticle catalyst. This research provides a strategy for designing electrocatalysts for efficient and selective ammonia production via nitrate reduction.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro- Fenton Oxidation

Xin Qin, Peike Cao, Xie Quan, Kun Zhao, Shuo Chen, Hongtao Yu, Yan Su

Summary: In this study, a dual-atomic-site catalyst (CoFe DAC) was proposed to cooperatively catalyze middotOH electrogeneration. The CoFe DAC showed higher middotOH production rate compared to single-site catalysts, and it was more energy-efficient for coking wastewater treatment.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Electrochemical Opening of Impermeable Nanochannels in Laminar Graphene Membranes for Ultrafast Nanofiltration

Gaoliang Wei, Lei Du, Haiguang Zhang, Jiajian Xing, Shuo Chen, Xie Quan

Summary: In this study, it was found that electrochemical treatment can expand the restacked regions of reduced graphene oxide (rGO) membranes, leading to the formation of ultrafast water transport nanochannels. The expansion is driven by hydrogen bond interactions between water molecules and electrochemically produced hydroxyl groups on the edges of rGO nanosheets. The treated rGO membranes exhibit a permeance 2 orders of magnitude higher than pristine rGO membranes and about 3 times higher than graphene oxide membranes. Additionally, the rGO membranes also show higher ionic/molecular rejection performance due to their smaller average pore size.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Multidisciplinary Sciences

Electroregulation of graphene-nanofluid interactions to coenhance water permeation and ion rejection in vertical graphene membranes

Hai-Guang Zhang, Xie Quan, Lei Du, Gao-Liang Wei, Shuo Chen, Hong-Tao Yu, Ying-Chao Dong

Summary: Researchers propose an electropolarization strategy using vertically aligned reduced graphene oxide (VARGO) membrane to regulate interfacial hydrogen-bond and electrostatic interactions, achieving high water permeation and ion rejection performance.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

Article Engineering, Environmental

Electromotive force induced by dynamic magnetic field electrically polarized sediment to aggravate methane emission

Qilin Yu, Haohao Mao, Zhiqiang Zhao, Xie Quan, Yaobin Zhang

Summary: As a major driver of global methane production, methanogens are exposed to an environment filled with dynamic electromagnetic waves, which may induce electromotive force (EMF) to potentially influence methanogen metabolism. This study found that exposure to a dynamic magnetic field increased biogas production through induced EMF. The methane emissions from sediments increased by 41.71% when exposed to a dynamic magnetic field with an intensity of 0.20 to 0.40 mT. The EMF accelerated the respiration of methanogens and bacteria, leading to enhanced microbial metabolism.

WATER RESEARCH (2023)

Article Chemistry, Multidisciplinary

Electronic Tuning of SnO2 by rGO Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution

Muhammad Irfan Ahmad, Shuo Chen, Hongtao Yu, Xie Quan

Summary: This study demonstrates the successful production of H2O2 by introducing reduced graphene oxide (rGO) into SnO2, which enhanced light absorption and reduced the energy band gap. Among different concentrations of rGO, 0.5wt% rGO-SnO2 showed the highest H2O2 yield. The findings provide valuable guidance for designing efficient photocatalysts for H2O2 generation.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Engineering, Environmental

Molten Salt Intercalated MXene Membrane for d-Spacing Stabilization under Electrochemical Assistance

Chengyu Yuan, Yuxin Li, Lulu Qian, Jiajian Xing, Xu Wang, Haiguang Zhang, Lei Du, Gaoliang Wei, Shuo Chen, Xie Quan

Summary: This study presents a molten salt intercalation method for the fabrication of an Al3+-intercalated MXene membrane with good antiswelling ability. The intercalated membrane shows significant increase in the Al-O group and Al content, while in situ XRD tests confirm the stability of d-spacing with Al3+ intercalation. The membranes demonstrate excellent separation efficacy for organic dyes and antibiotics with rejection rates exceeding 90%.

ACS ES&T ENGINEERING (2023)

Article Engineering, Environmental

Enhanced nitrogen removal in the upgrading of municipal wastewater treatment plants by using zero-valent iron-modified biofilm carriers and clinoptilolite-modified biofilm carriers

Yanping Shi, Tao Liu, Xie Quan, Shuo Chen, Hongtao Yu, Wuzhe Quan

Summary: A municipal WWTP upgraded its process to A2O-IFFAS by filling ZVI-modified biofilm carriers into anoxic bioreactors and clinoptilolite-modified biofilm carriers into aerobic bioreactors. The upgraded process achieved high nitrogen removal efficiency and met the discharge standard requirements.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Colorimetric and fluorimetric detection of CN- ion using a highly selective and sensitive chemosensor derived from coumarin-hydrazone

Wiem Bouali, Muejgan Yaman, Nurgul Seferogu, Zeynel Seferogu

Summary: Novel chemosensors, including coumarin hydrazide, were synthesized and demonstrated the ability to detect cyanide ions through absorption and fluorescence turn-off response. The reaction mechanism between the sensors and the ions was determined through experimental and theoretical studies. The sensors exhibited high detection ability and effectiveness.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Accelerated naked-eye identification of cations using non-plasmonic amplification by functionalized GQDs: A novel photochemical microfluidic sensor for environmental/mineral analysis using Lab-on-paper technology

Parinaz Abdollahian, Hassan Heidari, Soheila Hassanzadeh, Mohammad Hasanzadeh

Summary: This study successfully synthesized various types of thiolated-graphene quantum dots (GQDs) and utilized them in a one-droplet microfluidic paper-based analytical device for the simultaneous multi-sensing of heavy metal ions. The GQDs were functionalized and stabilized on the surface of hydrophobic fiber-glass, enabling colorimetric chemosensing of ions including iron, copper, cobalt, mercury, chrome, manganese, and nickel. The results were confirmed using fluorescence spectrometry, and the platform showed potential for facile metal ion detection in human urine models and environmental fluids.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Kinetic study of azobenzene photoisomerization under ambient lighting

S. L. Barrett, C. Meyer, E. Cwiklik, V Fieglein, M. Burns, J. Guerrero, W. J. Brittain

Summary: Laboratory illumination is strong enough to create a photostationary state (PSS) of amphiphilic azo-benzene compounds in water. The [cis]PSS/[trans]PSS ratios were observed to be 0.33-1.2 in D2O and 0.37-3.8 in dimethyl sulfoxide-d6. ortho-Fluoroazobenzene amphiphiles show higher cis-isomer concentration at equilibrium compared to non-fluorinated compounds due to differences in optical absorption profiles. The kinetics of isomerization were measured using UV-Vis spectroscopy and the ratio of trans-to-cis rates does not directly correlate with the observed PSS. The half-life for PSS formation is 40 minutes for fluorinated compounds and 80 minutes for non-fluorinated compounds.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Synthesis of eco-friendly carboxymethyl cellulose /metal-organic framework biocomposite and its photocatalytic activity

Jalil Khodayari, Karim Zare, Omid Moradi, Mohammadreza Kalaee, Niyaz Mohammad Mahmoodi

Summary: In this study, an eco-friendly biocomposite (CMC/MIL/CuO) was synthesized and characterized, and its ability to decolorize Acid Blue 92 dye was investigated. The results showed that CMC/MIL/CuO can be used as a suitable photocatalyst for dye decolorization.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Constructing the Cu2O@Au/Cu2O integrated heterostructure cooperated with LSPR effect for enhanced photocatalytic performance via a three-in-one synergy

Bo Ma, Qian Xu, Huajun Yao, Yalin Chen, Yiyang Wang, Yunfei Yang, Hongfang Shen, Youjun Lu

Summary: This study designed an integrated structure of Cu2O@Au/Cu2O heterostructure particles, which achieved significantly enhanced photocatalytic performance by simultaneously considering the integrated structural characteristics and localized surface plasmon resonance (LSPR) effect. Experimental characterization and theoretical simulation confirmed the three-in-one synergy of the integrated heterostructure, including the LSPR effect of Au nanoparticles, the light scattering based on core-shell heterostructure, and the effective charge separation based on inter-embedded heterostructure. The concept of integrated heterostructure cooperated with LSPR effect provides a new strategy for designing future catalysts.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Effects of pH-dependent speciation on the photolytic degradation mechanism of phosphonates

Robert G. H. Marks, Sarah P. Rockel, Klaus Kerpen, Holger Somnitz, Philipp R. Martin, Maik A. Jochmann, Torsten C. Schmidt

Summary: This study investigated the pH-dependent photolysis of phosphonates in aqueous solutions and analyzed the transformation products. The results showed that the photolysis rate of phosphonates was influenced by pH and light conditions. Furthermore, the carbon kinetic isotope effects varied for different types of phosphonates.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Surface chemistry of phytochemical enriched MgO nanoparticles for antibacterial, antioxidant, and textile dye degradation applications

T. M. Naren Vidaarth, S. Surendhiran, K. S. G. Jagan, S. Savitha, K. S. Balu, A. Karthik, B. Kalpana

Summary: In this study, magnesium oxide nanoparticles were synthesized using plant seed extracts, which exhibited excellent performance in removing dyes from textile water bodies. These nanoparticles also showed strong antibacterial and antioxidant properties.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Activation mechanisms of recombination processes in irradiated poly (arylenephthalides)

Mikhail Yu. Ovchinnikov, Vyacheslav A. Antipin, Sergey L. Khursan

Summary: In this study, the recombination of separated ion-radical states (SIRS) in PAPh films was analyzed, and it was found that the contribution of X-SIRS recombination to total luminescence varies with different environments. It was also shown that the recombination of labile SIRS is independent of the nature of the atmosphere. The study theoretically substantiated that SIRS recombination can occur via the transfer of both positive and negative charges, and the efficiency of thermal activation of recombination processes depends on the ratio of radiant and conductive channels of energy transfer.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Search of electron-rich and electron-deficient building blocks through data mining and library generation for the designing of polymers for organic solar cells

Sumaira Naeem, Tayyaba Mubashir, Mudassir Hussain Tahir, Jawayria Najeeb, Ahmed Z. Dewidar, Hosam O. El-ansary, Silas Lagat, Anthony Pembere

Summary: This study presents an alternative methodology using machine learning for the selection of novel organic molecules to develop high-performance organic solar cell devices.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Influence of nickel doping and cotton stalk activated carbon loading on structural, optical, and photocatalytic properties of zinc oxide nanoparticles

D. Thirumoolan, S. Ragupathy, S. Renukadevi, P. Rajkumar, Rajakumar S. Rai, R. M. Saravana Kumar, Imran Hasan, Mani Durai, Young-Ho Ahn

Summary: In this study, the photodegradation of brilliant green dye was studied in relation to the comparative photocatalytic activity of pure ZnO and Ni-doped ZnO/CSAC. The Ni-doped ZnO/CSAC showed a higher photocatalytic degradation rate under visible light irradiation, suggesting its potential as an effective wastewater treatment material.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Synthesis of novel 2D ZIF-8 single sheet from bulk multilayed ZIF-8 crystal, through facile mixed solutin strategy, with enhanced photocatalytic performance

Ajmal Khan, Zhidong Chang, Wenjun Li, Xiaohui Ma, Mei Dong, Liang Geng, Ghulam Yasin, Shuaib Khan, Hira Anwar

Summary: Due to its functional structure and tunable shape, 2D zeolitic imidazole framework (ZIFs) have gained significant interest in various fields. In this study, thin ZIF-8 sheets were prepared using a mixed solvent and then delaminated into single layers through physical sonication. These hexagonal sheets exhibited high stability and controlled morphology, and showed excellent performance in dye degradation compared to 3D ZIF-8 crystals.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Bifunctional photo- and ionochromic hybrids of indolyl(thienyl) diarylethenes and rhodamine

Vitaly A. Podshibyakin, Evgenii N. Shepelenko, Leonid D. Popov, Tatyana M. Valova, Anton O. Ayt, Lyudmila G. Kuzmina, Anton V. Lisovin, Oleg N. Burov, Mikhail E. Kletskii, Alexander D. Dubonosov, Vladimir A. Bren

Summary: Bifunctional hybrids containing photochromic indolyl(thienyl) diarylethenes and an ionochromic rhodamine moiety connected by a dimethylene spacer were synthesized. These hybrids exhibit absorption at 450-455 nm and fluorescence at 560 nm in toluene. UV light triggers ring-closed non-fluorescent diarylethene formation, which can be reversed under visible light or in the dark. In the presence of H+ cation, a naked eye effect is observed with the opening of the rhodamine-spirolactam ring and a pink-crimson coloration at 561 nm accompanied by intense long-wavelength emission at 586 nm. This process is reversible by exposure to triethylamine, as confirmed by NMR experiments. The light-induced isomerizations and proton-induced transformations were explained using computational methods. Reversible switching of fluorescent properties can be achieved by light irradiation and proton.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf Extract: Their Bio-Pharmaceutical and catalytic properties

Majid Sharifi-Rad, Hazem S. Elshafie, Pawel Pohl

Summary: The study investigated the synthesis of silver nanoparticles using Lallemantia royleana leaf extract, characterized their physico-chemical properties, and evaluated their biopharmaceutical and catalytic applications. The synthesized nanoparticles showed good stability and exhibited higher antioxidant, antimicrobial, anti-inflammatory, anti-arthritic, and cytotoxic activities compared to the leaf extract. These results provide a promising green synthesis route for silver nanoparticles with potential biomedical and catalytic applications.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Preparation of persistently luminescent polyacrylic acid-based nanocomposite ink for secure encoding

Meera Moydeen Abdul Hameed, Badr M. Thamer

Summary: Security encoding using photochromism is an effective method for creating authentication substrates. A unique photochromic ink has been developed that emits light continuously under UV rays and darkness. The ink is produced by dispersing lanthanidedoped aluminate nanoparticles in a polymer binder. The resulting composite ink can be used to create transparent films on paper, and the stamped patterns become visible under UV rays, changing from colorless to green.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)

Article Chemistry, Physical

Oxazoline-appended benzimidazolium salts for selective micromolar detection of Fe3+ions in water and an experimental and theoretical insight into Fe3+ion sensing mechanism

Monika Lamoria, Rita Kakkar, Marilyn Daisy Milton

Summary: Four novel water-soluble benzimidazolium and bis-benzimidazolium salts with a fluorophore-spacer-receptor design were synthesized and demonstrated to selectively detect Fe3+ ions with large Stokes shifts. The binding mechanism and detection performance were investigated through theoretical and experimental studies.

JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY (2024)