4.3 Article Proceedings Paper

Pulmonary surfactant kinetics of the newborn infant: novel insights from studies with stable isotopes

Journal

JOURNAL OF PERINATOLOGY
Volume 29, Issue -, Pages S29-S37

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/jp.2009.32

Keywords

surfactant kinetics; disaturated phosphatidylcholine (DSPC); stable isotopes; respiratory distress syndrome (RDS); meconium aspiration syndrome (MAS); congenital diaphragmatic hernia (CDH)

Ask authors/readers for more resources

Deficiency or dysfunction of the pulmonary surfactant plays a critical role in the pathogenesis of respiratory diseases of the newborn. After a short review of the pulmonary surfactant, including its role in selected neonatal respiratory conditions, we describe a series of studies conducted by applying two recently developed methods to measure surfactant kinetics. In the first set of studies, namely 'endogenous studies', which used stable isotope-labeled intravenous surfactant precursors, we have shown the feasibility of measuring surfactant synthesis and kinetics in infants using several metabolic precursors, including plasma glucose, plasma fatty acids and body water. In the second set of studies, namely 'exogenous studies', which used a stable isotope-labeled phosphatidylcholine (PC) tracer given endotracheally, we estimated the surfactant disaturated phosphatidylcholine (DSPC) pool size and half-life. The major findings of our studies are presented here and can be summarized as follows: (a) the de novo synthesis and turnover rates of the surfactant (DSPC) in preterm infants with respiratory distress syndrome (RDS) are very low with either precursor; (b) in preterm infants with RDS, pool size is very small and half-life much longer than what has been reported in animal studies; (c) patients recovering from RDS who required higher continuous positive airway pressure pressure after extubation or reintubation have a lower level of intrapulmonary surfactant than those who did well after extubation; (d) term newborn infants with pneumonia have greatly accelerated surfactant catabolism; and (e) infants with uncomplicated congenital diaphragmatic hernia (CDH) and on conventional mechanical ventilation have normal surfactant synthesis, but those requiring extracorporeal membrane oxygenated (ECMO) do not. Information obtained from these studies in infants will help to better tailor exogenous surfactant treatment in neonatal lung diseases. Journal of Perinatology (2009) 29, S29-S37; doi:10.1038/jp.2009.32

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available