4.2 Article

Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilic β2,2-amino acid

Journal

JOURNAL OF PEPTIDE SCIENCE
Volume 18, Issue 10, Pages 609-619

Publisher

WILEY
DOI: 10.1002/psc.2441

Keywords

anticancer peptides; beta-amino acid; head-to-tail cyclic peptides; molecular dynamics simulations; structure activity relationship; NMR

Funding

  1. KOSK II grant from the Norwegian Research Council (NFR) [185141/V30]
  2. Alberta Cancer Foundation

Ask authors/readers for more resources

We have recently reported a series of synthetic anticancer heptapeptides (H-KKW beta 2,2WKK-NH2) containing a central achiral and lipophilic beta 2,2-amino acid that display low toxicity against non-malignant cells and high proteolytic stability. In the present study, we have further investigated the effects of increasing the rigidity and amphipathicity of two of our lead heptapeptides by preparing a series of seven to five residue cyclic peptides containing the two most promising beta 2,2-amino acid derivatives as part of the central lipophilic core. The peptides were tested for anticancer activity against human Burkitt's lymphoma (Ramos cells), haemolytic activity against human red blood cells (RBC) and cytotoxicity against healthy human lung fibroblast cells (MRC-5). The results demonstrated a considerable increase in anticancer potency following head-to-tail peptide cyclization, especially for the shortest derivatives lacking a tryptophan residue. High-resolution NMR studies and molecular dynamics simulations together with an annexin-V-FITC and propidium iodide fluorescent assay showed that the peptides had a membrane disruptive mode of action and that the more potent peptides penetrated deeper into the lipid bilayer. The need for new anticancer drugs with novel modes of action is demanding, and development of short cyclic anticancer peptides with an overall rigidified and amphipathic structure is a promising approach to new anticancer agents. Copyright (c) 2012 European Peptide Society and John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available