4.6 Article

Detection of interlayer interaction in few-layer graphene

Journal

PHYSICAL REVIEW B
Volume 92, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.075408

Keywords

-

Funding

  1. Research Grants Council of Hong Kong [604112, N_HKUST613/12, 16302215, HKUST9/CRF/08, CRF_HKU9/CRF/13G]
  2. Raith-HKUST Nanotechnology Laboratory electron-beam lithography facility [SEG HKUST08]

Ask authors/readers for more resources

Bernal-stacked few-layer graphene has been investigated by analyzing its Landau-level spectra through quantum capacitance measurements. We find that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. In trilayer graphene, the interlayer interaction parameters are generally similar to those of graphite. However, in tetralayer graphene, the hopping parameters of the two bulk layers are quite different from those of the two outer layers. This represents direct evidence of the surface relaxation phenomenon. Traditionally, the van der Waals interaction between the carbon layers is thought to be insignificant. However, we suggest that the interlayer interaction is an important factor in explaining the observed results, and the symmetry-breaking effects in graphene sublattice are not negligible.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available