4.4 Article

Heparin-binding epidermal growth factor-like growth factor promotes murine enteric nervous system development and enteric neural crest cell migration

Journal

JOURNAL OF PEDIATRIC SURGERY
Volume 47, Issue 10, Pages 1865-1873

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.jpedsurg.2012.05.008

Keywords

Heparin-binding EGF-like growth factor; Enteric neural crest derived cells; Migration; Enteric nervous system

Funding

  1. National Institutes of Health [R01 DK65306, R01 GM61193, R01 DK074611]

Ask authors/readers for more resources

Background/Purpose: Developmental defects of the enteric nervous system lead to a variety of disorders including Hirschprung disease. We have previously shown that heparin-binding epidermal growth factor-like growth factor (HB-EGF) exerts neuroprotective effects on injured neurons. The goals of this study were to assess the role of HB-EGF in enteric nervous system development and to evaluate the effect of HB-EGF on enteric neural crest-derived cell (ENCC) migration in the developing gastrointestinal tract of mice. Materials and Methods: HB-EGF immunohistochemistry was used to examine HB-EGF protein expression in the hindgut of embryonic mice. Gut specimens were stained for PGP9.5 (a neuronal cell marker) to examine the extent of ENCC migration in the intestine at different embryonic stages in HB-EGF knockout (KO) and wild-type (WT) mice. Embryonic gut organ cultures were established to examine the effect of HB-EGF on ENCC migration. Results: The expression of HB-EGF was limited to the endodermal epithelium of the hindgut in early gestation, but rapidly involved the hindgut mesenchyme after ENCC migrated into this region. ENCC migration was significantly delayed in HB-EGF KO compared with WT embryos, leading to defects in neural colonization of the distal gut in postnatal HB-EGF KO mice. Addition of HB-EGF to WT embryonic intestine significantly promoted ENCC migration, as demonstrated by a significant increase in the ratio of ENCC migration distance toward the distal hindgut/total colon length (78% +/- 4% vs 53% +/- 2%, P = .001). Conclusions: Deletion of the HB-EGF gene leads to enteric nervous system developmental defects. HB-EGF stimulates ENCC migration in the gut, supporting a potential role for administration of HB-EGF in the future for the treatment of patients with intestinal neuronal disorders. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available