4.6 Article

Critical current destabilizing perpendicular magnetization by the spin Hall effect

Journal

PHYSICAL REVIEW B
Volume 92, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.024428

Keywords

-

Funding

  1. JSPS KAKENHI [25790044]
  2. MEXT R & D Next-Generation Information Technology
  3. Grants-in-Aid for Scientific Research [25790044] Funding Source: KAKEN

Ask authors/readers for more resources

The critical current needed to destabilize the magnetization of a perpendicular ferromagnet via the spin Hall effect is studied. Both the dampinglike and fieldlike torques associated with the spin current generated by the spin Hall effect are included in the Landau-Lifshitz-Gilbert equation to model the system. In the absence of the fieldlike torque, the critical current is independent of the damping constant and is much larger than that of conventional spin torque switching of collinear magnetic systems, as in magnetic tunnel junctions. With the fieldlike torque included, we find that the critical current scales with the damping constant as alpha(0) (i.e., damping independent), alpha, and alpha(1/2) depending on the sign of the fieldlike torque and other parameters such as the external field. Numerical and analytical results show that the critical current can be significantly reduced when the fieldlike torque possesses the appropriate sign, i.e., when the effective field associated with the fieldlike torque is pointing opposite to the spin direction of the incoming electrons. These results provide a pathway to reducing the current needed to switch magnetization using the spin Hall effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available