4.7 Article

Linear Free-Energy Relationship and Rate Study on a Silylation-Based Kinetic Resolution: Mechanistic Insights

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 79, Issue 6, Pages 2384-2396

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo402569h

Keywords

-

Funding

  1. University of South Carolina
  2. National Science Foundation [CHE-1055616]

Ask authors/readers for more resources

The substituent effect of different p-substituted triphenylsilyl chlorides on silylation-based kinetic resolutions was explored. Electron-donating groups slow down the reaction rate and improve the selectivity, while electron-withdrawing groups increase the reaction rate and decrease the selectivity. Linear free-energy relationships were found correlating both selectivity factors and initial rates to the sigma(para) Hammett parameters. A weak correlation of selectivity factors to Charton values was also observed when just alkyl substituents were employed but was nonexistent when substituents with more electronic effects were incorporated. The rate data suggest that a significant redistribution of charge occurs in the transition state, with an overall decrease in positive charge. The linear free-energy relationship derived from selectivity factors is best understood by the Hammond postulate. Early and late transition states describe the amount of substrate participation in the transition state and therefore the difference in energy between the diastereomeric transition states of the two enantiomers. This work highlights our efforts toward understanding the mechanism and origin of selectivity in our silylation-based kinetic resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available