4.7 Article Proceedings Paper

Numerical prediction of thermodynamic properties of iron-chromium alloys using semi-empirical cohesive models: The state of the art

Journal

JOURNAL OF NUCLEAR MATERIALS
Volume 385, Issue 2, Pages 268-277

Publisher

ELSEVIER
DOI: 10.1016/j.jnucmat.2008.12.001

Keywords

-

Funding

  1. EPSRC [EP/G003955/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/G003955/1] Funding Source: researchfish

Ask authors/readers for more resources

In this work the capability of existing cohesive models to predict the thermodynamic properties of Fe-Cr alloys are critically evaluated and compared. The two-band model and the concentration-dependent model, which are independently developed extensions of the embedded-atom method, are demonstrated to be equivalent and equally capable of reproducing the thermodynamic properties of Fe-Cr alloys. The existing potentials fitted with these formalisms are discussed and compared with an existing cluster expansion model. The phase diagram corresponding to these models is evaluated using different but complementary methods. The influence of mixing enthalpy, low-energy states and vibrational entropy on the phase diagram is examined for the different cohesive models. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available