4.4 Article Proceedings Paper

Excess pressure drop and drag calculations for strain-hardening fluids with mild shear-thinning: Contraction and falling sphere problems

Journal

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS
Volume 166, Issue 16, Pages 939-950

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnnfm.2011.04.009

Keywords

Viscoelastic fluid; Pressure-drop; Extensional viscous flow; Axisymmetric contraction-expansion; Drag coefficient

Categories

Funding

  1. Engineering and Physical Sciences Research Council [EP/C513037/1, EP/I00145X/1] Funding Source: researchfish
  2. EPSRC [EP/I00145X/1] Funding Source: UKRI

Ask authors/readers for more resources

This study extends our previous analysis on pressure-drops for strain-hardening Boger-type fluids in contraction flow settings, into those fluids that manifest mild shear-thinning properties. Numerical simulations are compared and contrasted for a variety of constitutive equations, categorised through their differences in viscometric functional response, considering application on 4:1:4 contraction-expansion flow and 2:1 flow past a sphere. Here, prior results on pressure-drop enhancement for constant shear-viscosity fluids have revealed the counter-influences of first normal stress differences and extensional viscosity. The present comparative work advances this study by selectively including the effects of shear-thinning. Suitable models to accomplish this are chosen from the class of Phan-Thien/Tanner (PTT) models, with cross-reference to FENE-models and Oldroyd-B. Furthermore, the work explores the falling sphere problem with comparison of the drag coefficient factor for various implementations. The numerical computations are performed by appealing to a well-founded hybrid finite element/finite volume algorithm. using structured triangular meshing, semi-implicit time-stepping and subcell technology. The cell-vertex finite volume scheme is particularly suited to the solution of the stress subsystem, and invokes fluctuation-distribution for upwinding and median-dual-cells for source-term representation. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Mechanics

The similarity theory of free turbulent shear flows of viscoelastic fluids

Mateus C. Guimaraes, Fernando T. Pinho, Carlos B. da Silva

Summary: A new theory is proposed to describe the conformation state of polymer chains in free turbulent shear flows of viscoelastic fluids. The theory shows the existence of minimum and maximum solvent dissipation reduction asymptotes and four different polymer deformation regimes, based on self-similarity arguments and new scaling relations for the turbulent flux of conformation tensor. In addition, analytical solutions for the self-similar transverse profiles of the conformation tensor components are obtained. The theory is validated through excellent agreement with direct numerical simulations employing the FENE-P rheological model.

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS (2024)