4.7 Article

Integrated piezoelectric function in a high thermostable thermoplastic PZT/PEEK composite

Journal

JOURNAL OF NON-CRYSTALLINE SOLIDS
Volume 388, Issue -, Pages 32-36

Publisher

ELSEVIER
DOI: 10.1016/j.jnoncrysol.2014.01.020

Keywords

Piezoelectric polymer composites; PEEK polymer matrix; Submicronic PZT particles; Piezoelectric coefficient; Dielectric permittivity

Ask authors/readers for more resources

A piezoelectric structural material has been developed. Lead Zirconate Titanate (PZT) submicronic nanoparticles have been dispersed in a thermostable high performance thermoplastic polymer Poly(Ether Ether Ketone) i.e. PEEK to ensure piezoelectric properties. The inorganic particles with a mean diameter of 900 nm are polycrystalline as highlighted by HRTEM with a grain diameter estimated at 15 nm. XRD patterns have shown that the crystalline structure is rhombohedral i.e. ferroelectric. The PZT/PEEK composites have been elaborated by extrusion which allows reaching a satisfactory dispersion of particles even at high volume fraction (30% in volume). One of the challenges was to find poling conditions compatible with the thermal stability of the matrix. Indeed, this composite must be poled above the polymer glass transition temperature to improve matching of dielectric permittivity between inorganic and organic phases. The influence of the poling electric field on the final piezoelectric activity of the composite has also been studied to better understand the role of the polymer matrix. Finally, after a poling step, the PZT/PEEK composite exhibits a piezoelectric strain coefficient which can be exploited over a wide temperature range. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available