4.7 Article

Crystallization kinetics of Fe73.5-xMnxCu1Nb3Si13.5B9 (x=0, 1, 3, 5, 7) amorphous alloys

Journal

JOURNAL OF NON-CRYSTALLINE SOLIDS
Volume 355, Issue 1, Pages 12-16

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnoncrysol.2008.09.037

Keywords

Amorphous metals; Metallic glasses; Nanocrystals

Funding

  1. Slovak Grant Agency (VEGA) [1/14009/07]

Ask authors/readers for more resources

In this study, we have investigated the effect of substituting Mn for Fe on the crystallization kinetics of amorphous Fe73.5-xMnxCu1Nb3Si13.5B9 (x = 1, 3, 5, 7) alloys. The samples were annealed at 550 degrees C and 600 degrees C for 1 h under an argon atmosphere. The X-ray diffraction analyses showed only a crystalline peak belonging to the alpha-Fe(Si) phase, with the grain size ranging from 12.2 nm for x = 0 to 16.7 nm for x = 7. The activation energies of the alloys were calculated using Kissinger, Ozawa and Augis-Bennett models based on differential thermal analysis data. The Avrami exponent n was calculated from the Johnson-Mehl-Avrami equation. The activation energy increased up to x = 3. then decreased with increasing Mn content. The values of the Avrami exponent showed that the crystallization is typical diffusion-controlled three-dimensional growth at a constant nucleation rate. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available