4.7 Article Proceedings Paper

Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells

Journal

JOURNAL OF NON-CRYSTALLINE SOLIDS
Volume 354, Issue 19-25, Pages 2440-2444

Publisher

ELSEVIER
DOI: 10.1016/j.jnoncrysol.2007.09.037

Keywords

amorphous semiconductors; silicon; solar cells

Ask authors/readers for more resources

The effect of a-Si:H i/p buffer layer on the performance of nc-Si:H solar cells is studied systematically. The results show that for thin nc-Si:H cells, an optimized i/p buffer layer significantly reduces the dark current thus increases the open-circuit voltage. We believe that the carrier recombination at the i/p interface is one of the determining factors for the nc-Si:H cell performance, especially for cells with a thin intrinsic layer. Therefore, optimizing the i/p buffer layer is one of the key factors for achieving high efficiency nc-Si:H solar cells. This interface effect is less pronounced as the nc-Si:H intrinsic layer thickness increases, where the recombination in the bulk becomes a dominant factor. Combining the improved nc-Si:H intrinsic layer with a proper hydrogen dilution and an optimized a-Si:H i/p buffer layer, the performance of nc-Si:H single-junction and a-Si:H/a-SiGe:H/nc-Si:H triple junction cells is significantly improved. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available