4.4 Article

Increased throughput assays of locomotor dysfunction in Drosophila larvae

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 203, Issue 2, Pages 325-334

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2011.08.037

Keywords

Drosophila; Larva; Behaviour; Locomotion; Video tracking; Increased throughput

Funding

  1. BBSRC
  2. Alzheimer's Society UK [103]
  3. Henry Smith Charity
  4. Alzheimer's Society
  5. Steno Diabetes Center Aarhus (SDCA) [103] Funding Source: researchfish
  6. Medical Research Council [G120/881] Funding Source: researchfish
  7. MRC [G120/881] Funding Source: UKRI

Ask authors/readers for more resources

Larval locomotion is a sensitive readout of a range of nervous system deficits in Drosophila, and has been utilised to quantify modulation of the disease phenotype in models of human disease. Single larvae are typically analysed in series using manual quantification of parameters such as contraction rate, or grouped together and studied en-masse. Here, we describe the development of tests for the analysis of several spatially isolated third instar larvae in parallel. We rapidly quantify larval turning rate and velocity during wandering behaviour in a 4 plate assay. In a second test, larvae are recorded as they race along five parallel lanes towards a yeast stimulus. This allows increased throughput analysis of comparative genotypes simultaneously, video archiving, and detection of exacerbation or rescue of defective locomotion in a Drosophila model of tauopathy, as we demonstrate genetically and through delivery of candidate therapeutic chemicals in fly food. The tests are well-suited for rapid comparison of locomotion capability in Drosophila mutants or candidate modulation screens in Drosophila models of human disease. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemical Research Methods

Ultrasound biomicroscopy in the quantification of brain perfusion parameters of a rat stroke model: Analysis of contrast agent bolus kinetic dynamics

Aline Silva da Cruz, Maria Margarida Drehmer, Wagner Baetas-da-Cruz, Joao Carlos Machado

Summary: This study quantified microcirculation cerebral blood flow in a rat model of ischemic stroke using ultrasound biomicroscopy and ultrasound contrast agents. The results showed high sensitivity and specificity of this method, making it a valuable tool for preclinical studies.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research

Christina Dalla, Ivana Jaric, Pavlina Pavlidi, Georgia E. Hodes, Nikolaos Kokras, Anton Bespalov, Martien J. Kas, Thomas Steckler, Mohamed Kabbaj, Hanno Wuerbel, Jordan Marrocco, Jessica Tollkuhn, Rebecca Shansky, Debra Bangasser, Jill B. Becker, Margaret McCarthy, Chantelle Ferland-Beckham

Summary: Many funding agencies have emphasized the importance of considering sex as a biological variable in experimental design to improve the reproducibility and translational relevance of preclinical research. Omitting the female sex from experimental designs in neuroscience and pharmacology can result in biased or limited understanding of disease mechanisms. This article provides methodological considerations for incorporating sex as a biological variable in in vitro and in vivo experiments, including the influence of age and hormone levels, and proposes strategies to enhance methodological rigor and translational relevance in preclinical research.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

Non-rigid-registration-based positioning and labelling of triaxial OPMs on a flexible cap for wearable magnetoencephalography

Wenyu Gu, Dongxu Li, Jia-Hong Gao

Summary: We developed a precise and rapid method for positioning and labelling triaxial OPMs on a wearable magnetoencephalography (MEG) system, improving the efficiency of OPM positioning and labelling.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

DSE-Mixer: A pure multilayer perceptron network for emotion recognition from EEG feature maps

Kai Lin, Linhang Zhang, Jing Cai, Jiaqi Sun, Wenjie Cui, Guangda Liu

Summary: The article introduces an EEG feature map processing model for emotion recognition, which achieves significantly improved accuracy by fusing EEG information at different spatial scales and introducing a channel attention mechanism.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

Introducing the STREAC (Spike Train Response Classification) toolbox☆

John E. Parker, Asier Aristieta, Aryn H. Gittis, Jonathan E. Rubin

Summary: This work presents a toolbox that implements a methodology for automated classification of neural responses based on spike train recordings. The toolbox provides a user-friendly and efficient approach to detect various types of neuronal responses that may not be identified by traditional methods.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

Decoding fMRI data with support vector machines and deep neural networks

Yun Liang, Ke Bo, Sreenivasan Meyyappan, Mingzhou Ding

Summary: This study compared the performance of SVM and CNN on the same datasets and found that CNN achieved consistently higher classification accuracies. The classification accuracies of SVM and CNN were generally not correlated, and the heatmaps derived from them did not overlap significantly.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

lmeEEG: Mass linear mixed-effects modeling of EEG data with crossed random effects

Antonino Visalli, Maria Montefinese, Giada Viviani, Livio Finos, Antonino Vallesi, Ettore Ambrosini

Summary: This study introduces an analytical strategy that allows the use of mixed-effects models (LMM) in mass univariate analyses of EEG data. The proposed method overcomes the computational costs and shows excellent performance properties, making it increasingly important in the field of neuroscience.

JOURNAL OF NEUROSCIENCE METHODS (2024)

Article Biochemical Research Methods

RPM: An open-source Rotation Platform for open- and closed-loop vestibular stimulation in head-fixed Mice

Xavier Cano-Ferrer, Alexandra Tran -Van -Minh, Ede Rancz

Summary: This study developed a novel rotation platform for studying neural processes and spatial navigation. The platform is modular, affordable, and easy to build, and can be driven by the experimenter or animal movement. The research demonstrated the utility of the platform, which combines the benefits of head fixation and intact vestibular activity.

JOURNAL OF NEUROSCIENCE METHODS (2024)