4.4 Article Proceedings Paper

Culturing conditions determine neuronal and glial excitability

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 194, Issue 1, Pages 132-138

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jneumeth.2010.10.008

Keywords

Calcium homeostasis; L-Glutamate; Fura-2; Neurobasal; MEM; Rat; Hippocampus

Ask authors/readers for more resources

The cultivation of pure neuronal cultures is considered advantageous for the investigation of cell-type specific responses (such as transmitter release and also pharmacological agents), however, divergent results are a likely consequence of media modifications and culture composition. Using Fura-2 based imaging techniques, we here set out to compare calcium responses of rat hippocampal neurones and glia to excitatory stimulation with L-glutamate in different culture types and media. Neurones in neurone-enriched cultures had increased responses to 10 mu M and 100 mu M L-glutamate (+43 and 45%, respectively; p's < 0.001) and a slower recovery compared to mixed cultures, indicating heightened excitability. In matured (15-20 days in vitro) mixed cultures, neuronal responder rates were suppressed in a neurone-supportive medium (Neurobasal-A, NB: 65%) compared to a general-purpose medium (supplemented minimal essential medium, MEM: 96%). Glial response size in contrast did not differ greatly in isolated or mixed cultures maintained in MEM, but responder rates were suppressed in both culture types in NB (e.g. 10 mu M L-glutamate responders in mixed cultures: 29% in NB, 71% in MEM). This indicates that medium composition is more important for glial excitability than the presence of neurones, whereas the presence of glia has an important impact on neuronal excitability. Therefore, careful consideration of culturing conditions is crucial for interpretation and comparison of experimental results. Especially for investigations of toxicity and neuroprotection mixed cultures may be more physiologically relevant over isolated cultures as they comprise aspects of mutual influences between glia and neurones. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available