4.7 Article

Initial Investigation of the Effects of an Experimentally Learned Schema on Spatial Associative Memory in Humans

Journal

JOURNAL OF NEUROSCIENCE
Volume 34, Issue 50, Pages 16662-16670

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2365-14.2014

Keywords

fMRI; medial prefrontal cortex; memory retrieval; schema; spatial associative memory

Categories

Funding

  1. European Research Council [ERC R0001075]

Ask authors/readers for more resources

Networks of interconnected neocortical representations of prior knowledge, schemas, facilitate memory for congruent information. This facilitation is thought to be mediated by augmented encoding and accelerated consolidation. However, it is less clear how schema affects retrieval. Rodent and human studies to date suggest that schema-related memories are differently retrieved. However, these studies differ substantially as most human studies implement pre-experimental world-knowledge as schemas and tested item or non-spatial associative memory, whereas animal studies have used intraexperimental schemas based on item-location associations within a complex spatial layout that, in humans, could engage more strategic retrieval processes. Here, we developed a paradigm conceptually linked to rodent studies to examine the effects of an experimentally learned spatial associative schema on learning and retrieval of new object-location associations and to investigate the neural mechanisms underlying schema-related retrieval. Extending previous findings, we show that retrieval of schema-defining associations is related to activity along anterior and posterior midline structures and angular gyrus. The existence of such spatial associative schema resulted in more accurate learning and retrieval of new, related associations, and increased time allocated to retrieve these associations. This retrieval was associated with right dorsolateral prefrontal and lateral parietal activity, as well as interactions between the right dorsolateral prefrontal cortex and medial and lateral parietal regions, and between the medial prefrontal cortex and posterior midline regions, supporting the hypothesis that retrieval of new, schema-related object-location associations in humans also involves augmented monitoring and systematic search processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available