4.7 Article

Functional Connectivity in Healthy Subjects Is Nonlinearly Modulated by the COMT and DRD2 Polymorphisms in a Functional System-Dependent Manner

Journal

JOURNAL OF NEUROSCIENCE
Volume 33, Issue 44, Pages 17519-17526

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2163-13.2013

Keywords

-

Categories

Funding

  1. National Basic Research Program of China (973 program) [2011CB707800]
  2. Natural Science Foundation of China [81271551, 91132301]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB02030300]

Ask authors/readers for more resources

The dopamine system is known to modulate brain function in an inverted U-shaped manner. Recently, the functional networks of the brain were categorized into two systems, a control system and a processing system. However, it remains unclear whether the inverted U-shaped model of dopaminergic modulation could be applied to both of these functional systems. The catechol-O-methyltransferase (COMT) and dopamine D-2 receptor (DRD2) were genotyped in 258 healthy young human subjects. The local and long-range functional connectivity densities (FCDs) of each voxel were calculated and compared in a voxel-wise manner using a two-way (COMT and DRD2 genotypes) analysis of covariance. The resting-state functional connectivity analysis was performed to determine the functional networks to which brain regions with significant FCD differences belonged. Significant COMT X DRD2 interaction effects were found in the local FCDs of the superior portion of the right temporal pole (sTP) and left lingual gyrus (LG) and in the long-range FCDs of the right putamen and left medial prefrontal cortex (MPFC). Post hoc tests showed nonlinear relationships between the genotypic subgroups and FCD. In the control system, the sTP and putamen, components of the salience network, showed a U-shaped modulation by dopamine signaling. In the processing system, however, the MPFC of the default-mode network and the LG of the visual network showed an inverted U-shaped modulation by the dopamine system. Our findings suggest an interaction between COMT and DRD2 genotypes and show a functional system-dependent modulation of dopamine signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available