4.3 Article

The Cell Cycle Regulator Phosphorylated Retinoblastoma Protein Is Associated With Tau Pathology in Several Tauopathies

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/NEN.0b013e3182204414

Keywords

Dementia pugilistica; Neurodegeneration with brain iron accumulation type 1; Neurofibrillary tangles; Pick disease; Progressive supranuclear palsy; Retinoblastoma protein; Subacute sclerosing panencephalitis; Tau pathology

Funding

  1. National Institutes of Health [AG028679]
  2. Alzheimer's Association [NIRG-09-132727]

Ask authors/readers for more resources

Retinoblastoma protein (pRb) is a ubiquitous 928-amino acid cell cycle regulatory molecule with diverse biologic activities. One critical function of pRb is the control of the G(1)-to-S phase checkpoint of the cell cycle. In the hypophosphorylated state, pRb suppresses the activity of E2F transcription factors thereby inhibiting transcription of cell cycle-promoting genes. On phosphorylation, primarily by cyclin-dependent kinases, phosphorylated pRb dissociates from E2F and permits cell cycle progression. We previously found phosphorylated pRb to be intimately associated with hyperphosphorylated tau-containing neurofibrillary tangles of Alzheimer disease (AD), the pathogenesis of which is believed to involve dysregulation of the cell cycle and marked neuronal death. Here, we used immunohistochemistry to investigate the presence of phosphorylated pRb in other distinct neurodegenerative diseases that share the common characteristic of hyperphosphorylated tau pathology and neuronal loss with AD. We found colocalized labeling of tau pathology and phosphorylated pRb in Pick disease and progressive supranuclear palsy (3 cases each), neurodegeneration with brain iron accumulation type 1 (2 cases), and Parkinson-amyotrophic lateral sclerosis of Guam, subacute sclerosing panencephalitis, frontotemporal dementia and Parkinsonism linked to chromosome 17, and dementia pugilistica (1 case each). These observations further implicate aberrant neuronal cell cycle progression in neurodegenerative diseases, particularly tauopathies, and suggest a novel target for therapeutic intervention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available