4.2 Article

Growth Factor Receptor-Bound Protein 10-Mediated Negative Regulation of the Insulin-Like Growth Factor-1 Receptor-Activated Signalling Pathway Results in Cognitive Disorder in Diabetic Rats

Journal

JOURNAL OF NEUROENDOCRINOLOGY
Volume 25, Issue 7, Pages 626-634

Publisher

WILEY
DOI: 10.1111/jne.12040

Keywords

diabetic encephalopathy; Grb10; signalling pathway

Funding

  1. Chongqing Health Bureau

Ask authors/readers for more resources

Growth factor receptor-bound protein 10 (Grb10) is a Src homology 2 domain-containing protein and one of the binding partners for several transmembrane tyrosine kinase receptors, including insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1-R). The hippocampus, which is critical for cognitive functions, is one of the main distribution areas of Grb10 in the central nervous system. In recent years, diabetic encephalopathy has been defined as a third type of diabetes and the IGF1-IR pathway was shown to be critical for the neuropathogenic process of cognitive disorder in diabetes. However, the role of endogenous Grb10 in regulating the IGF1-IR pathway and neurobehavioural changes is not explicit. The present study aimed to determine the in vivo function of endogenous Grb10 in diabetic encephalopathy and the underlying mechanisms. Using stereotaxic surgical techniques and lentiviral vectors expressing specific short hairpin RNA, we could steadily knockdown Grb10 expression in the hippocampus. More importantly, we demonstrated that hippocampus-specific modulation of Grb10 protein levels led to a prominent remission of cognitive disorder, including improvements in both ultrastructural pathology and abnormal neurobehavioural changes. Our findings indicate that endogenous overexpression of Grb10 functions as a suppressor of the IGF1-IR pathway, which may represent an important mechanism for regulating cognitive disorder in diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available