4.5 Article

Motor neuropathy-associated mutation impairs Seipin functions in neurotransmission

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 129, Issue 2, Pages 328-338

Publisher

WILEY
DOI: 10.1111/jnc.12638

Keywords

AMPA receptor; EPSC; GABA; glutamate; IPSC; neurotransmission

Funding

  1. Agency for Science, Technology and Research (A*STAR) Biomedical Research Council
  2. Robert Wood Johnson Foundation

Ask authors/readers for more resources

Gain-of-toxic-function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N-glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N-glycosylation of Seipin on synaptic transmission by over-expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over-expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post-synaptic currents and miniature inhibitory post-synaptic currents. The amplitude of both evoked excitatory post-synaptic currents and inhibitory post-synaptic current is also compromised by mutant Seipin over-expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over-expressing Seipin-N88S, whereas neither gamma-amino butyric acid (GABA) nor alpha-Amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin-N88S-expressing neurons. These data demonstrate that Seipin-N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available