4.3 Article

II. In vitro evidence that (-)-OSU6162 and (+)-OSU6162 produce their behavioral effects through 5-HT2A serotonin and D2 dopamine receptors

Journal

JOURNAL OF NEURAL TRANSMISSION
Volume 118, Issue 11, Pages 1523-1533

Publisher

SPRINGER WIEN
DOI: 10.1007/s00702-011-0701-y

Keywords

Agonist; Partial agonist; Allosteric; Orthosteric; G-protein coupled receptor; Dopamine receptor; Serotonin receptor; Monoamine; Dopamine stabilizer

Ask authors/readers for more resources

(-)-OSU6162 has promise for treating Parkinson's disease, Huntington's disease and schizophrenia. Behavioral tests evaluating the locomotor effects of (-) and (+)-OSU6162 on 'low activity' animals (reserpinized mice and habituated rats) and 'high activity' animals (drug naive mice and non-habituated rats) revealed that both enantiomers of OSU6162 had dual effects on behavior, stimulating locomotor activity in 'low activity' animals and inhibiting locomotor activity in 'high activity' animals. To elucidate a plausible mechanism of action for their behavioral effects, we evaluated the intrinsic actions of (-)- and (+)-OSU6162, and a collection of other antipsychotic and antiparkinsonian agents at 5-HT2A and D2 receptors in functional assays with various degrees of receptor reserve, including cellular proliferation, phosphatidyl inositol hydrolysis, GTP gamma S and beta-arrestin recruitment assays. We also tested for possible allosteric actions of (-)-OSU6162 at D2 receptors. Both enantiomers of OSU6162 were medium intrinsic activity partial agonists at 5-HT2A receptors and low intrinsic activity partial agonists at D2 receptors. (+)-OSU6162 had higher efficacy at 5-HT2A receptors, which correlated with its greater stimulatory activity in vivo, but (-)-OSU6162 had higher potency at D2 receptors, which correlated with its greater inhibitory activity in vivo. (-)-OSU6162 did not display any convincing allosteric properties. Both (+)- and (-)-OSU6162 were significantly less active at 27 other monoaminergic receptors and reuptake transporters tested suggesting that D2 and 5-HT2A receptors play crucial roles in mediating their behavioral effects. Compounds with balanced effects on these two receptor systems may offer promise for treating neuropsychiatric diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available