4.0 Article

Modeling phase equilibria of semiclathrate hydrates of CH4, CO2 and N2 in aqueous solution of tetra-n-butyl ammonium bromide

Journal

JOURNAL OF NATURAL GAS CHEMISTRY
Volume 21, Issue 4, Pages 459-465

Publisher

ELSEVIER
DOI: 10.1016/S1003-9953(11)60391-5

Keywords

gas hydrate; phase equilibria; semiclathrate hydrate; tetra-n-butyl ammonium bromide (TBAB)

Funding

  1. Industrial Consultancy and Sponsored Research (ICSR)
  2. Indian Institute of Technology Madras, Chennai [OEC/10-11/530/NFSC/JITE]
  3. National Institute of Ocean Technology (NIOT), Chennai, India [OEC/10-11/105/NIOT/JITE]

Ask authors/readers for more resources

Semiclathrate hydrates of tetra-n-butyl ammonium bromide (TBAB) offer potential solution for gas storage, transportation, separation of flue gases and CO2 sequestration. Models for phase equilibria for these systems have not yet been developed in open literatures and thus require urgent attention. In this work, the first attempt has been made to model phase equilibria of semiclathrate hydrates of CH4, CO2 and N-2 in aqueous solution of TBAB. A thermodynamic model for gas hydrate system as proposed by Chen and Guo has been extended for semiclathrate hydrates of gases in aqueous solution of TBAB. A correlation for the activity of water relating to the system temperature, concentration of TBAB in the system and the nature of guest gas molecule has been proposed. The model results have been validated against available experimental data on phase equilibria of semiclathrate hydrate systems of aqueous TBAB with different gases as guest molecule. The extended Chen and Guo's model is found to be suitable to explain the promotion effect of TBAB for the studied gaseous system such as, methane, carbon dioxide and nitrogen as a guest molecule. Additionally, a correlation for the increase in equilibrium formation temperature (hydrate promotion temperature, Delta T-p) of semiclathrate hydrate system with respect to pure gas hydrate system has been developed and applied to semiclathrate hydrate of TBAB with several gases as guest molecules. The developed correlation is found to predict the promotion effect satisfactorily for the system studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available