4.4 Article

Modeling and simulation of titanium dioxide nanoparticle synthesis with finite-rate sintering in planar jets

Journal

JOURNAL OF NANOPARTICLE RESEARCH
Volume 13, Issue 3, Pages 973-984

Publisher

SPRINGER
DOI: 10.1007/s11051-010-0097-x

Keywords

Nanoparticles; Sintering; Flames; Modeling; Simulation; Fluid mechanics

Funding

  1. Minnesota Supercomputing Institute

Ask authors/readers for more resources

Numerical simulations of titanium dioxide nanoparticle synthesis in planar, non-premixed diffusion flames are performed. Titania is produced by the oxidation of titanium tetrachloride using a methane-air flame. The flow field is obtained using the two-dimensional Navier-Stokes equations. The methane-air flame and oxidation of titanium tetrachloride are modeled via one-step reactions. Evolution of the particle field is obtained via a nodal method which accounts for nucleation, condensation, coagulation, and coalescence with finite-rate sintering. The modeling of finite-rate sintering is accomplished via the use of uniform primary-particle size distribution. Simulations are performed at two different jet-to-co-flow velocity ratios as well as with finite-rate and instantaneous sintering models. In doing so we elucidate the effect of fluid mixing and finite-rate sintering on the particle field. Results show that highly agglomerated particles are found on the periphery of the eddies, where the collisions leading to nanoparticle coagulation occur faster than nanoparticle coalescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available