4.2 Article

Label-free detection of enhanced saccharide binding at pH 7.4 to nanoparticulate benzoboroxole based receptor units

Journal

JOURNAL OF MOLECULAR RECOGNITION
Volume 24, Issue 6, Pages 953-959

Publisher

WILEY
DOI: 10.1002/jmr.1142

Keywords

boroxole; monosaccharide detection; nanoparticle; isothermal titration calorimetry

Funding

  1. Federal Ministry of Education and Research of Germany (BMBF) [BioHySys 0311993]

Ask authors/readers for more resources

Nanoparticles modified with either 6-amino-1-hydroxy-2,1-benzoxaborolane (3-aminobenzoboroxole) or 3-aminophenylboronic acid were prepared by nucleophilic substitution of a styrene-co-DVB-co-vinylbenzylchloride latex (25 nm). Isothermal titration calorimetry (ITC) was used as a label-free detection method for the analysis of the binding between monosaccharides and these two differently derivatized nanoparticle systems at pH 7.4. Because ITC reveals, thermodynamical parameters such as the changes in enthalpy Delta H, freeenergy Delta G, and entropy Delta S, possible explanations for the higher binding constants can be derived in terms of entropy and enthalpy changes. In case of the modified nanoparticles, the free energy of binding is dominated by the entropy term. This shows that interfacial effects, besides the intrinsic affinity, lead to a higher binding constant compared with the free ligand. The highest binding constant was found for fructose binding to the benzoboroxole modified nanoparticles: Its value of 1150 M-1 is twice as high as for the free benzoboroxole and five times as high as with phenylboronic acid or 3-aminophenylboronic acid. In contrast to the binding of fructose to free boronic acids, which is an enthalpically driven process, the binding of fructose to the modified nanoparticles is dominated by the positive entropy term. Copyright (C) 2011 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available