4.7 Article

NADPH oxidase mediated maneb- and paraquat-induced oxidative stress in rat polymorphs: Crosstalk with mitochondrial dysfunction

Journal

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
Volume 123, Issue -, Pages 74-86

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pestbp.2015.03.007

Keywords

Maneb; Paraquat; Oxidative stress; NADPH oxidase; Mitochondrial dysfunction

Funding

  1. Indian Council of Medical Research, New Delhi
  2. University Grants Commission (UGC), New Delhi, India
  3. Department of Biotechnology (DBT), New Delhi, India
  4. Council of Scientific and Industrial Research (CSIR), New Delhi, India

Ask authors/readers for more resources

Oxidative stress is a key factor in Parkinson's disease (PD) pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and impaired mitochondrion regulate oxidative stress-mediated maneb (MB)- and paraquat (PQ)-induced Parkinsonism. However, their contribution in the MB- and PQ-induced toxicity in polymorphonuclear leukocytes (PMNs) is still elusive. The study investigated the role of NADPH oxidase and mitochondria in MB- and/or PQ-induced oxidative stress in the PMNs and the crossing point between the two. Animals were treated with MB and/or PQ for 1-3 weeks along with respective controls. In a few sets of experiments, rats were treated with/without NADPH oxidase inhibitor, apocynin, an hour prior to MB and/or PQ treatment. PMNs of MB and/or PQ treated animals were also treated with/without carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to assess the role of the mitochondria in superoxide and total free radical productions. MB and/or PQ were found to increase the level of total reactive oxygen species (ROS), superoxide radicals, catalytic activity and expression of NADPH oxidase and superoxide dismutase (SOD1/2) and mitochondrial ROS content in a time dependent manner. Conversely, catalase activity and mitochondrial membrane potential were attenuated. Apocynin alleviated MB- and/or PQ-induced changes in total ROS, superoxide radicals, expression/catalytic activity of NADPH oxidase and SOD1/2 along with the mitochondrial ROS and membrane potential. CCCP also inhibited ROS and superoxide levels in the PMNs of MB and/or PQ-treated animals. The results demonstrate the involvement of NADPH oxidase and mitochondrial dysfunction in MB and PQ-induced oxidative stress in PMNs and a plausible crosstalk between them. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available