4.7 Article

Serum Deprivation Confers the MDA-MB-231 Breast Cancer Line with an EGFR/JAK3/PLD2 System That Maximizes Cancer Cell Invasion

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 425, Issue 4, Pages 755-766

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2012.11.035

Keywords

phospholipase; cell invasion; cancer cells; JAK; EGFR

Funding

  1. National Institutes of Health [HL056653]
  2. Boonshoft School of Medicine [229102]
  3. State of Ohio Research Incentive [668372]

Ask authors/readers for more resources

Our laboratory has reported earlier that in leukocytes, phospholipase D2 (PLD2) is under control of Janus kinase 3 (JAK3), which mediates chemotaxis. Investigating JAK3 in cancer cells led to an important discovery as exponentially growing MDA-MB-231 human breast cancer cells, which are highly proliferative and metastatic, did not substantially use JAK3 to activate PLD2. However, in 2-h or 16-h starved cell cultures, JAK3 switches to a PLD2-enhancing role, consistent with the needs of those cells to enter a survival state that relies on an increase in PLD2 activity to withstand serum deprivation. Using a small-molecule tyrosine kinase inhibitor, the flavonoid 4',5,7-trihydroxyflavone (apigenin), as well as RNA silencing, we found that the invasive phenotype of MDA-MB-231 cells is mediated by PLD2 under direct regulation of both JAK3 and the tyrosine kinase, epidermal growth factor receptor (EGFR). Furthermore, serum-deprived cells in culture show an upregulated EGFR/JAK3/PLD2-PA system and are especially sensitive to a combination of JAK3 and PLD2 enzymatic activity inhibitors (30 nM apigenin and 300 nM 5-fluoro-2-indolyl des-chlorohalopemide (FIPI), respectively). Thus, a multi-layered activation of cell invasion by two kinases (EGFR and JAK3) and a phospholipase (PLD2) provides regulatory flexibility and maximizes the aggressively invasive power of MDA-MB-231 breast cancer cells. This is especially important in the absence of growth factors in serum, coincidental with migration of these cells to new locations. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available