4.7 Article

A Footnote on Allostery

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 425, Issue 9, Pages 1500-1508

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2013.03.012

Keywords

allostery; equivalent monomer; allosteric range

Ask authors/readers for more resources

A manuscript on allostery signed by Francis Crick and Jeffries Wyman was sent by Crick to Jacques Monod in 1965. Monod transmitted a copy of the manuscript, upon which he had written several comments, to Jean-Pierre Changeux, then a post-doctoral fellow at the University of California Berkeley in the laboratory of Howard Schachman. Changeux provided a copy to Stuart Edelstein, a graduate student in the same laboratory. The manuscript was never submitted for publication, but Edelstein retained his copy since that time and has edited it for publication in the special issue on allostery. The text emphasized the interpretation of the properties of an allosteric oligomer by characterizing its equivalent monomer. The text also developed the concept of the allosteric range and included a simple equation for calculation of the Hill coefficient from the parameters of the Monod-Wyman-Changeux model. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers

Ankita Chadda, Alexander G. Kozlov, Binh Nguyen, Timothy M. Lohman, Eric A. Galburt

Summary: In this study, it was found that the DNA damage response in Mycobacterium tuberculosis differs from well-studied model bacteria. The DNA repair helicase UvrD1 in Mtb is activated through a redox-dependent process and is closely associated with the homo-dimeric Ku protein. Additionally, Ku protein is shown to stimulate the helicase activity of UvrD1.

JOURNAL OF MOLECULAR BIOLOGY (2024)