4.7 Review

In Vivo Dynamics of Intracistronic Transcriptional Polarity

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 385, Issue 3, Pages 733-747

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.11.020

Keywords

transcriptional polarity; transcription termination; Rho transcription factor; translation; kinetics

Funding

  1. The Netherlands Organization for Scientific Research

Ask authors/readers for more resources

Transcriptional polarity occurs in Escherichia coli when cryptic Rho-dependent transcription terminators become activated as a consequence of reduced translation. Increased spacing between RNA polymerase and the leading ribosome allows the transcription termination factor Rho to bind to mRNA, migrate to the RNA polymerase, and induce termination. Transcriptional polarity results in decreased synthesis of inefficiently translated mRNAs and, therefore, in decreased expression not only of downstream genes in the same operon (intercistronic polarity) but also of the cistron in which termination occurs (intracistronic polarity). To quantitatively measure the effect of different levels of translation on intracistronic transcripfion termination, the polarity-prone lacZ reporter gene was fused to a range of mutated ribosome binding sites, repressed to different degrees by local RNA structure. The results show that polarity gradually increases with decreasing frequency of translational initiation, as expected. Closer analysis, with the help of a newly developed kinetic model, reveals that efficient intracistronic termination requires very low translational initiation frequencies. This finding is unexpected because Rho is a relatively small protein that binds rapidly to its RNA target, but it appears to be true also for other examples of transcriptional polarity reported in the literature. The conclusion must be that polarity is more complex than just an increased exposure of the Rho binding site as the spacing between the polymerase and the leading ribosome becomes larger. Biological consequences and possible mechanisms are discussed. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers

Ankita Chadda, Alexander G. Kozlov, Binh Nguyen, Timothy M. Lohman, Eric A. Galburt

Summary: In this study, it was found that the DNA damage response in Mycobacterium tuberculosis differs from well-studied model bacteria. The DNA repair helicase UvrD1 in Mtb is activated through a redox-dependent process and is closely associated with the homo-dimeric Ku protein. Additionally, Ku protein is shown to stimulate the helicase activity of UvrD1.

JOURNAL OF MOLECULAR BIOLOGY (2024)