4.3 Article

Novel 16S rRNA based PCR method targeting Deinococcus spp. and its application to assess the diversity of deinococcal populations in environmental samples

Journal

JOURNAL OF MICROBIOLOGICAL METHODS
Volume 90, Issue 3, Pages 197-205

Publisher

ELSEVIER
DOI: 10.1016/j.mimet.2012.05.005

Keywords

Deinococcus diversity; Group specific primers; Deinococcus specific hemi-nested PCR; PCR-DGGE; Radiation resistant bacteria

Funding

  1. Council of Scientific and Industrial Research, Government of India

Ask authors/readers for more resources

The members of the genus Deinococcus are extensively studied because of their exemplary radiation resistance. Both ionizing and non-ionizing rays are routinely employed to select upon the radiation resistant deinococcal population and isolate them from the majority of radiation sensitive population. There are no studies on the development of molecular tools for the rapid detection and identification of deinococci from a mixed population without causing the bias of radiation enrichment. Here we present a Deinococcus specific two-step hemi-nested PCR for the rapid detection of deinococci from environmental samples. The method is sensitive and specific to detect deinococci without radiation exposure of the sample. The new protocol was successfully employed to detect deinococci from several soil samples from different geographical regions of India. The PCR method could be adapted to a three-step protocol to study the diversity of the environmental deinococcal population by denaturing gradient gel electrophoresis (DGGE). Sequence analysis of the DGGE bands revealed that the samples harbor diverse populations of deinococci, many of which were not recovered by culturing and may represent novel clades. We demonstrate that the genus specific primers are also suitable for the rapid identification of the bacterial isolates that are obtained from a typical radiation enrichment isolation technique. Therefore the primers and the protocols described in this study can be used to study deinococcal diversity from environmental samples and can be employed for the rapid detection of deinococci in samples or identifying pure culture isolates as Deinococcus species. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available