4.4 Article

Matrix rheology effects on reaction rim growth I: evidence from orthopyroxene rim growth experiments

Journal

JOURNAL OF METAMORPHIC GEOLOGY
Volume 27, Issue 1, Pages 71-82

Publisher

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1525-1314.2008.00804.x

Keywords

crystal growth; mechanical closure; reaction rim; rheology

Categories

Funding

  1. German Science Foundation (DFG) [M11205/2]

Ask authors/readers for more resources

The rim-forming reaction quartz + olivine = orthopyroxene is used to investigate the effect of matrix rheology on rim growth rates. Orthopyroxene rim growth around olivine grains in quartz matrix is compared to rim growth around quartz grains in an olivine matrix. At constant P-T, within one single capsule, orthopyroxene rims grow faster around quartz clasts in olivine matrix than around olivine clasts in quartz matrix. Fourier transform infra-red spectra indicate that the entire samples are water saturated because of water adsorption on the reactant grain surfaces. The increased orthopyroxene growth rates in olivine matrix as opposed to quartz matrix are interpreted in terms of matrix rheology, where in the two different matrix-inclusion arrangements the olivine matrix behaves 'softer' and the quartz matrix 'more rigid'. The strain energy associated with accommodation of the negative reaction volume is higher for the quartz than the olivine matrix and reduces the free energy that drives orthopyroxene rim growth. Growth textures in both kinds of orthopyroxene rims indicate that the diffusivity of MgO slightly exceeds the diffusivity of SiO(2). The relative mobility of MgO and SiO(2) at given P, T, fH(2)O seems to be controlled by energy minimization during orthopyroxene growth at the compressive Ol/Opx interface. Our experiments provide evidence for two previously overlooked effects relevant to rim growth reactions in metamorphic rocks: (i) diffusivity along chemical potential gradients to reaction sites is a function of rheology and (ii) the relative diffusivity of components during reaction rim or corona growth is a function of local volume changes at the rim's interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available