4.3 Article

The structural variation of the gas diffusion layer and a performance evaluation of polymer electrolyte fuel cells as a function of clamping pressure

Journal

JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY
Volume 22, Issue 3, Pages 565-574

Publisher

KOREAN SOC MECHANICAL ENGINEERS
DOI: 10.1007/s12206-007-1211-6

Keywords

polymer electrolyte fuel cells; gas diffusion layer; mass transfer; clamping pressure; electrical resistance

Ask authors/readers for more resources

Interfacial contact resistance between gas diffusion layers (GDLs) and bipolar plates (BPs) has a substantial effect on the performance loss of polymer electrolyte fuel cells (PEFCs). Particularly during the final manufacturing process of a fuel cell stack, an externally applied clamping load determines the extent of electrical contact between those two solid components. In order to have the least electrical contact loss, it is highly necessary to keep all PEFC components close each other without causing structural failure of fuel cell stacks. In the present work, we investigated the effect of the clamping pressure on extrinsic properties such as porosity and permeability, which is closely related to mass transfer of reactants. Also, the variance of interfacial electrical resistance was analyzed as a function of the stack clamping pressure or the compressed GDL thickness, which reflects the external clamping load. Then with these experimentally obtained material properties of GDL, computational efforts were made to account for the effect of the clamping pressure on the fuel cell performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available