4.6 Article

Resistance spot welding and the effects of welding time and current on residual stresses

Journal

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
Volume 214, Issue 11, Pages 2545-2552

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2014.05.008

Keywords

Finite element model; Resistance spot welding; Residual stresses; Welding time and current

Ask authors/readers for more resources

A 2-D finite element model is developed based on fully coupled electrical-thermal and incrementally coupled thermal-mechanical analysis. The growth rate of the weld nugget as a function of welding time and current is studied. Comparison of the predicted results with the experimental data shows good agreement. Contact area variations and pressure distribution between the sheets' faying surface and electrode-sheet interfaces during the welding process are studied. Compressive radial residual stress on the surface of the specimen obtained in the center region of the nugget while it becomes tensile and rises toward the nugget edge. The maximum tensile residual stress occurs outside of the nugget, near the edge region. The effects of welding time and current on distribution and magnitude of welding residual stresses are also investigated. The magnitudes of radial residual stresses in the inner and outer areas of the weld nugget grow with increasing the welding time and current while they decrease slightly in the edge regions of the weld nugget. The growth rate of the maximum residual stress reduces with increase in the welding time and current. This fact is more tangible for welding time. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available