4.5 Article

Decreased vesicular storage and aldehyde dehydrogenase activity in multiple system atrophy

Journal

PARKINSONISM & RELATED DISORDERS
Volume 21, Issue 6, Pages 567-572

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.parkreldis.2015.03.006

Keywords

Multiple system atrophy; Parkinson disease; Putamen; Dopamine; Norepinephrine; DOPAL

Funding

  1. National Institute of Neurological Disorders and Stroke (NINDS)
  2. National Institute of Mental Health (NIMH)
  3. NINDS
  4. National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services [HHSN271201300028C]

Ask authors/readers for more resources

Background: Parkinson disease (PD) and multiple system atrophy (MSA) share some neuropathologic features (nigrostriatal dopaminergic lesion, alpha-synuclein deposition) but not others (Lewy bodies in PD, glial cytoplasmic inclusions in MSA). In PD evidence has accrued for a vesicular storage defect and decreased aldehyde dehydrogenase (ALDH) activity in residual dopaminergic terminals, resulting in accumulation of the toxic dopamine (DA) metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). In this study we asked whether MSA entails a similar abnormal neurochemical pattern. Methods: DA and its main neuronal metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its main neuronal metabolite 3,4-dihydroxyphenylglycol (DHPG), the catecholamine precursor DOPA, and DOPAL were measured in striatal and frontal cortical tissue from patients with pathologically proven end-stage MSA (N = 15), sporadic PD (N = 17), and control subjects (N = 18). Results: Compared to the control group, the MSA and PD groups had similarly decreased putamen DA (by 96% and 93%, p < 0.0001), DOPAC (97% and 95%, p < 0.0001), NE (91% and 74%, p < 0.0001), and DHPG (81% and 74%, p < 0.0001). In the MSA and PD groups, ratios of DOPAL:DA were 2.3 and 3.5 times control and DHPG:NE 3.1 and 2.6 times control, while DOPAC:DOPAL ratios were decreased by 61% and 74%. In both diseases cortical NE and DHPG were decreased, while DA and DOPAC were not. Conclusions: MSA and PD entail a catecholamine metabolic profile indicating impaired vesicular storage, decreased ALDH activity, and DOPAL buildup, which might be part of a common pathway in catecholamine neuronal death. Targeting this pathway by interfering with catecholaldehyde production or effects constitutes a novel treatment approach. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available