4.4 Article

The coupling effects of hexapole and octopole fields in quadrupole ion traps: a theoretical study

Journal

JOURNAL OF MASS SPECTROMETRY
Volume 48, Issue 8, Pages 937-944

Publisher

WILEY
DOI: 10.1002/jms.3239

Keywords

quadrupole ion trap; hexapole; octopole; coupling effects; harmonic balance method

Funding

  1. National Natural Sciences Foundation of China [21205005]
  2. National Scientific Instrumentation Grant Program of China [2011YQ0900502, 2011YQ09000501, 2012YQ040140-07]

Ask authors/readers for more resources

A theoretical method, the harmonic balance method, was introduced to study the coupling effects of hexapole and octopole fields on ion motion in a quadrupole ion trap. Ion motion characteristics, such as ion motion center displacement, ion secular frequency shift, nonlinear resonance curve and buffer gas damping effects, have been studied with the presence of both hexapole and octopole fields. It is found that hexapole fields have bigger impacts on ion motion center displacement, while octopole fields dominate ion secular frequency shift. Furthermore, the nonlinear features originated from hexapole and octopole fields could enhance or cancel each other, which provide us more space in a practical ion trap design process. As an example, an ion trap with improved performance was designed using a specific combination of hexapole and octopole fields. In this ion trap, a hexapole field was used to achieve efficient ion directional ejection, while an octopole field was added to correct the chemical mass shift and resolution degradation introduced by the hexapole field. Copyright (c) 2013 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available