4.5 Review

Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements

Journal

JOURNAL OF MARINE SYSTEMS
Volume 76, Issue 4, Pages 433-443

Publisher

ELSEVIER
DOI: 10.1016/j.jmarsys.2007.09.013

Keywords

Rare earth elements; The Gaoping (Kaoping) River; Sr isotope; Chemical weathering

Funding

  1. NSC
  2. MOE in Taiwan

Ask authors/readers for more resources

This study aims at quantifying the distribution of REEs associated with chemical weathering processes, as well as investigating weathering mechanisms and source regions of the Gaoping (formerly spelled Kaoping) River (KPR) catchment basin located at southwestern Taiwan. Spatial distributions of dissolved rare earth elements, as well as major ions, trace elements and Sr isotopes in river waters were analyzed using SF-ICPMS and TIMS. Our results indicate that REE concentrations and patterns predominantly reflect sources and intensity of chemical weathering along the river's catchment. Most specimens have high Na/Cl (4.2-30.1 mol/mol) ratios due to strong weathering intensity in the upper stream. The Na/Ca and Mg/Ca ratios suggest the main contribution is from weathering of silicates and carbonates. Total concentrations of REEs are rather low in the Gaoping (Kaoping) River (6.7-15.4 ng/L), possibly influenced by adsorption onto suspended particles. The REE patterns also reflect source heterogeneity in weathering minerals with large LREE depletion and MREE enrichment. Europium is strongly enriched in the Gaoping (Kaoping) River water, as a result of its preferential dissolution from suspended particles. Unique Gadolinium anomaly is present in all specimens, likely related to contamination due to clinic waste disposal. Small fractionations of LREE/HREE have occurred along the KPR and can be used as a distinct signature for source identification. The main stream samples exhibit a relatively wide range of Sr-87/Sr-86, 0.71265-0.71360, with a systematical increase downstream due to source mixing of dissolved basalt (less radiogenic) and sedimentary rocks. Each tributary shows distinct Sr isotope signatures due to different rock types and ages. These isotopic and elemental compositions provide important information on weathering source and erosion budget. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available