4.7 Article

Analysis of a linear walking worker line using a combination of computer simulation and mathematical modeling approaches

Journal

JOURNAL OF MANUFACTURING SYSTEMS
Volume 28, Issue 2-3, Pages 64-70

Publisher

SOC MANUFACTURING ENGINEERS
DOI: 10.1016/j.jmsy.2009.12.001

Keywords

-

Ask authors/readers for more resources

It has become increasingly important in the last few years to develop rapid, dynamic, responsive and reconfigurable manufacturing processes and systems. This is because manufacturing enterprises are now being forced to develop and constantly improve their production systems so that they can quickly and economically react to unpredictable conditions such as varying production volumes and product variants with small lot size, high quality and low costs. One effective method to achieve this is to create a more flexible, highly skilled and agile workforce capable to perform multiple or all the required tasks in a production area where the system can be reconfigured easily as needed to accommodate changes of production requirement on a daily or weekly basis. This paper presents a study of a so-called linear walking worker assembly line based on a combination of computer simulation and mathematical analysis. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This design attempts to combine the flexibility of the U-shaped moving worker assembly cell with the efficiency of the conventional fixed worker assembly line. The paper aims to evaluate one critical factor of in-progress waiting time that affects the overall system performance providing a dynamic simulation outlook as well as an insight into the mechanism of such a flexible and reconfigurable manufacturing system. (C) 2009 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Industrial

Deep learning-based semantic segmentation of machinable volumes for cyber manufacturing service

Xiaoliang Yan, Reed Williams, Elena Arvanitis, Shreyes Melkote

Summary: This paper extends prior work by developing a semantic segmentation approach for machinable volume decomposition using pre-trained generative process capability models, providing manufacturability feedback and labels of candidate machining operations for query 3D parts.

JOURNAL OF MANUFACTURING SYSTEMS (2024)

Article Engineering, Industrial

Interpretable real-time monitoring of pipeline weld crack leakage based on wavelet multi-kernel network

Jing Huang, Zhifen Zhang, Rui Qin, Yanlong Yu, Guangrui Wen, Wei Cheng, Xuefeng Chen

Summary: In this study, a deep learning framework that combines interpretability and feature fusion is proposed for real-time monitoring of pipeline leaks. The proposed method extracts abstract feature details of leak acoustic emission signals through multi-level dynamic receptive fields and optimizes the learning process of the network using a feature fusion module. Experimental results show that the proposed method can effectively extract distinguishing features of leak acoustic emission signals, achieving higher recognition accuracy compared to typical deep learning methods. Additionally, feature map visualization demonstrates the physical interpretability of the proposed method in abstract feature extraction.

JOURNAL OF MANUFACTURING SYSTEMS (2024)