4.5 Article

A Computational Fluid Dynamic Analysis of the Effect of Weld Nozzle Geometry Changes on Shielding Gas Coverage During Gas Metal Arc Welding

Publisher

ASME
DOI: 10.1115/1.4024817

Keywords

CFD; GMAW; shielding gas coverage; nozzle geometry; side draughts

Funding

  1. BAE Systems Surface Ships Limited

Ask authors/readers for more resources

Three geometry changes to the inner bore of a welding nozzle and their effects on weld quality during gas metal arc welding (GMAW) were investigated through the use of computational fluid dynamic (CFD) models and experimental trials. It was shown that an increased shielding gas exit velocity increased the gas column's stability, and therefore its resistance to side draughts. Double helix geometry within the nozzle reduced the gas column's stability by generating a fast moving wall of gas around a slow moving center. A pierced internal plate initially increased the gas velocity, however, the nozzle was unable to maintain the velocity and the change produced gas columns of similar stability to a standard nozzle. A pierced end plate produced the best results, increasing the shielding gases exit velocity sufficiently to marginally outperform the standard 16 mm welding nozzle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available