4.5 Article

Acoustic Emission Monitoring for Ultrasonic Cavitation Based Dispersion Process

Publisher

ASME
DOI: 10.1115/1.4024041

Keywords

-

Funding

  1. National Science Foundation [0926084]
  2. Technology Innovation Program of National Institute of Standards and Technology
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [926084] Funding Source: National Science Foundation

Ask authors/readers for more resources

In the manufacturing of micro/nanocomposite materials, micro/nanoparticles need to be dispersed evenly into the base materials. However, due to their high surface-to-volume ratio and high surface energy, the micro/nanoparticles tend to agglomerate and cluster together. Ultrasonic cavitation is effective to disperse micro/nanoparticles. However, works on correlating the cavitation parameters with the micro/nanoparticle dispersion are limited. This paper presents a real-time acoustic monitoring method based on cavitation noises to monitor the micro/nanoparticle dispersion status. In this paper, two types of cavitation noise power indices computed based on the raw cavitation noise signals are used to monitor the cavitation status. Both off-line and on-line steady state detection algorithms are developed. These algorithms can be used to determine the critical process parameters including the power of the ultrasonic sound and the dispersion time. Extensive experiments have been conducted to illustrate the effectiveness of the developed methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available