4.5 Article

Magnetohydrodynamic mixed convective flow of Al2O3-water nanofluid inside a vertical microtube

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 369, Issue -, Pages 132-141

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2014.06.037

Keywords

Nanofluid; Vertical microtube; Nanoparticles migration; Magnetic field; Slip velocity; Modified Buongiorno's model

Ask authors/readers for more resources

The current study is a theoretical investigation of magnetohydrodynamic (MHD) flow and mixed convective heat transfer of Al2O3-water nanofluid inside a vertical microtube. A two-phase mixture model is used for nanofluid in the hypothesis that Brownian motion and thermophoretic diffusivities are the only significant slip mechanisms between solid and liquid phases. Because of the non-adherence of the fluid-solid interface due to the microscopic roughness in microtubes, the Navier's slip boundary condition is considered at the surfaces. Assuming a fully developed flow and heat transfer, the basic partial differential equations including continuity, momentum, and energy equations are reduced to two-point ordinary boundary value differential equations with endpoint singularities and solved numerically. The results indicate that for smaller nanoparticles, the nanoparticle volume fraction is more uniform and there is no abnormal variations in the heat transfer rate and pressure drop. Also, the heat transfer rate is enhanced in the presence of the magnetic field especially for the smaller nanoparticles. Moreover, as the magnetic field strength (Hu) intensifies, the peak of the velocity profile near the walls is increased; however, the peak of the velocity profile at the core region is decreased. (C) 2014 Elsevier By. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Acoustics

Fuzzy model-based disturbance rejection control for atomic force microscopy with input constraint

Parvin Mahmoudabadi, Mahsan Tavakoli-Kakhki, S. Hassan HosseinNia

Summary: This paper presents a controller design method for the AFM system based on a fuzzy model and linear matrix inequality formulation. The proposed method accurately represents the system and effectively suppresses chaos and reduces disturbance.

JOURNAL OF VIBRATION AND CONTROL (2023)

Article Metallurgy & Metallurgical Engineering

Comprehensive Assessment of Laser Tube Bending Process by Response Surface Methodology

Mehdi Safari, Ricardo Alves de Sousa, Jalal Joudaki

Summary: In this study, the bending of mild steel tubes was investigated using a laser beam. The effects of six process parameters on the bending angles were examined. The results showed that increasing laser power, irradiation length, and number of irradiation passes, as well as reducing scanning speed and laser beam diameter, led to higher bending angles.

STEEL RESEARCH INTERNATIONAL (2023)

Article Automation & Control Systems

Closed-Loop Frequency Analysis of Reset Control Systems

Ali Ahmadi Dastjerdi, Alessandro Astolfi, Niranjan Saikumar, Nima Karbasizadeh, Duarte Valerio, S. Hassan HosseinNia

Summary: This article presents a closed-loop frequency analysis tool for reset control systems. It provides sufficient conditions for the existence of steady-state response and shows that the steady-state response for periodic inputs is periodic with the same period as the input. The framework presented in this article allows for the computation of steady-state response and defines a notion of closed-loop frequency response, including high order harmonics.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL (2023)

Article Automation & Control Systems

Band-Passing Nonlinearity in Reset Elements

Nima Karbasizadeh, Ali Ahmadi Dastjerdi, Niranjan Saikumar, S. Hassan HosseinNia

Summary: This article discusses the nonlinearity and effects of reset elements. Reset elements have less phase lag based on describing function (DF) analysis compared to their linear counterparts, but they produce higher-order harmonics. The article investigates the steady-state higher-order harmonics for reset elements with one resetting state and proposes an architecture and design method to band-pass the nonlinearity and its effects.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY (2023)

Article Physics, Applied

Hybrid nanofluid flow in a deformable and permeable channel

Tanya Sharma, Rakesh Kumar, Kuppalapalle Vajravelu, Mohsen Sheikholeslami

Summary: This paper investigates hybrid nanofluid flow with mediated compressions and dilations subject to the temperature-dependent viscosity/thermal conductivity and inclined magnetic field. It discusses the significance of flow mediated dilation in medical science and its applications in various fields. The mathematical model and solution methods are also presented, with analysis showing the effects of squeezing/dilating forces on fluid velocity. The study highlights the potential use of flow mediated dilation/contraction in targeted drug delivery and assessment of endothelial function.

INTERNATIONAL JOURNAL OF MODERN PHYSICS B (2023)

Article Mathematics, Applied

Optimization of a shell and helically finned tube heat exchanger with stepped annular fins

Adel Karimbakhshi Rostami, Davood Domiri Ganji

Summary: This study investigates the heat transfer in a shell and helically coiled finned tube heat exchanger with stepped annular fins for the first time. Using response surface methodology, correlations are proposed to predict the Nusselt number based on geometric and operating parameters. The results show that the parameters Re and Pr have the most impact on the Nusselt number.

ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK (2023)

Article Physics, Multidisciplinary

Investigation of hybrid nanofluid SWCNT-MWCNT with the collocation method based on radial basis functions

Elham Tayari, Leila Torkzadeh, Davood Domiri Ganji, Kazem Nouri

Summary: This research investigates the non-Newtonian natural convection of a hybrid nanofluid consisting of single-wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT) based on methanol fluid between two parallel vertical plates. The collocation method based on radial basis functions (RBF) is used to solve the reduced ordinary differential equations. The results obtained using the RBF method are in good agreement with the numerical method, demonstrating the effectiveness of the RBF method. The velocity distribution and boundary layer thickness are influenced by the hybrid nanotubes volume fraction.

EUROPEAN PHYSICAL JOURNAL PLUS (2023)

Article Thermodynamics

Employing the (SWCNTs-MWCNTs)/H2O nanofluid and topology structures on the microchannel heatsink for energy storage: A thermal case study

H. Nabi, M. Gholinia, D. D. Ganji

Summary: The present study investigated the increase in heat transfer rate of a microchannel heatsink with high heat flux using topology structures and CNTs nanofluids. Four nature-inspired topology structures were compared with a straight microchannel heatsink. The spider netted model showed the highest heat transfer coefficient and pressure changes. The use of SWCNT-H2O nanofluid increased the heat transfer coefficient and pump power by 56.1% and 46.1% respectively at a Reynolds number of 550.

CASE STUDIES IN THERMAL ENGINEERING (2023)

Article Mechanics

Computer simulation of Cu: AlOOH/water in a microchannel heat sink using a porous media technique and solved by numerical analysis AGM and FEM

S. A. Abdollahi, P. Jalili, B. Jalili, H. Nourozpour, Y. Safari, P. Pasha, D. D. Ganji

Summary: This study investigates the flow and thermic field characteristics of a coherent nanofluid-guided microchannel heat sink. It evaluates the cooling effect of a hybrid blend of copper and aluminum nanoparticles added to water. The results show that increasing the volume fraction of nanoparticles lowers the temperature and improves the heat transmission rate.

THEORETICAL AND APPLIED MECHANICS LETTERS (2023)

Article Engineering, Mechanical

Numerical analysis on the impact of axial grooves on vortex cooling behavior in gas turbine blade's leading edge

Mehran Mohammadi, Khashayar Hosseinzadeh, Davood Domiri Ganji

Summary: This article presents a novel design of a vortex chamber with axial grooves for cooling the leading edge of turbine blades. The chamber generates a vortex through nine tangential inlets and includes an axial groove. The grooves enhance flow turbulence and increase heat transfer by disrupting the thermal boundary layer. Using a 3D model based on the Reynolds-averaged Navier-Stokes equation, different turbulent models and experimental data were compared, with the Reynolds stress model (RSM) showing the highest accuracy. Various groove sizes, positions, and numbers were examined to study the vortex structure and heat transfer mechanism. The results revealed improved heat transfer in the chamber with grooves, especially with three grooves resulting in an average Nusselt number increase of over 4%. The pressure difference between chambers with and without grooves was not significant, but the highest friction factor occurred in the case with three grooves.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING (2023)

Article Energy & Fuels

Efficacy of porous foam on discharging of phase change material with inclusion of hybrid nanomaterial

M. Sheikholeslami

Summary: The influence of porous media on the solidification of water with hybrid nanoparticles has been simulated in this study. A tree-shaped fin and the impact of radiation were utilized to expedite the process. The hybrid nanomaterial consisted of a mixture of Al2O3 and CuO with a volume fraction of 0.01 for each powder type, making the homogeneous mixture approximation logical. A wiremesh packed approach was used to model the porous foam, and the impact of porosity on the freezing process was analyzed. The temperature equation, including two source terms for radiation and phase changing, was considered, and the Galerkin method was implemented for solving the equations.

JOURNAL OF ENERGY STORAGE (2023)

Article Engineering, Multidisciplinary

Computational assessment of venous anastomosis angles and graft configurations in arteriovenous graft

M. H. Pahlavanian, Davood Domiri Ganji

Summary: Arterio-venous grafts (AVGs) are commonly used for long-term vascular access in hemodialysis. Intimal hyperplasia (IH) caused by unfavorable hemodynamic conditions is the main reason for AVG failure. This study utilizes computational fluid dynamics (CFD) to assess the impact of different geometrical designs on the hemodynamic conditions at the venous anastomosis. The results show that optimizing the anastomosis angle and introducing cross-sectional ridges in the graft can significantly reduce the risk of IH development.

RESULTS IN ENGINEERING (2023)

Article Engineering, Multidisciplinary

Selecting superior fin geometry among four suggested geometries for shell and helically coiled finned tube heat exchangers with numerical simulation and experimental validation

A. K. Rostami, D. D. Ganji

Summary: In this study, the authors investigated the performance of a shell and helically coiled finned tube heat exchanger using numerical and experimental methods. They examined the heat exchanger with simple annular fins for the first time and proposed four new fin geometries, selecting the stepped fin geometry as the superior design. The authors developed correlations to predict the mean Nusselt number on both the shell and tube sides, with good accuracy (maximum 10% error) for calculating the Nusselt numbers. The results showed that the mean Nusselt number of the coil side was consistent across all geometries, and the Reynolds number had little effect on the mean Nusselt number on the other side.

RESULTS IN ENGINEERING (2023)

Article Engineering, Multidisciplinary

Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD

Kh. Hosseinzadeh, M. R. Mardani, M. Paikar, A. Hasibi, T. Tavangar, M. Nimafar, D. D. Ganji, Mohammad Behshad Shafii

Summary: The MHD extended flow of second-grade viscoelastic nanofluid on a curve stretching surface in two-dimensional mode is investigated, considering factors such as Joule heating and curvature parameter to examine the heat and mass transfer rates. Nonlinear ordinary differential system is obtained through appropriate transformations, and the quasi-linearization method is used for numerical solutions. The influence of specific variables on the fluid properties is studied. It is concluded that increasing the Schmidt number prevents the growth of fluid concentration, while temperature increases due to an increment in radiation parameter. The viscous fluid velocity and concentration decrease faster compared to the viscoelastic fluid. The surface drag force is an increasing function of the non-Newtonian fluid. Increasing the values of Nt and Nb leads to a higher heat transfer rate for the second-grade fluid compared to the Newtonian fluid. The mass transfer of the second-grade fluid is significantly affected by the Schmidt number and chemical reaction parameters compared to the Newtonian fluid.

RESULTS IN ENGINEERING (2023)

Article Energy & Fuels

Simulation for charging of phase change material in existence of nanomaterial within solar energy storage system

M. Jafaryar, M. Sheikholeslami

Summary: Regarding the thermal management of the storage unit, one possible solution is to use an extended surface made of highly conductive metallic materials. This study suggests four different arrangements of the system by changing the number and thickness of plates, and solid matrix made of Silicon Carbide, Aluminum, and Stainless Steel. Additionally, loading alumina nanoparticles improves the heat absorption of the phase change material. Increasing the number of radial plates and reducing their thickness enhances heating penetration. The best case in terms of melting speed is achieved when using 40 plates with a thickness of 0.5 mm made of SiC material, resulting in a 87.84% reduction in melting time compared to the worst case.

JOURNAL OF ENERGY STORAGE (2023)

Article Materials Science, Multidisciplinary

Remote detection of bovine serum albumin (BSA) using cantilever beam magnetometer

Bibhutibhusan Nayak, S. Narayana Jammalamadaka

Summary: This article presents a method for remote detection of bovine serum albumin (BSA) using modified cantilever beam magnetometry (CBM). By combining a magnetostrictive Fe70Ga30 cantilever with optical detection technique, researchers were able to detect high concentrations of BSA remotely. The results of this study demonstrate the potential of this method in estimating the magnetostriction of thin films.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Influence of magnetic external field and particle size on the formation of a single domain state

Yu Hao, R. E. Camley, Z. Celinski

Summary: Magnetic particles have various applications and their magnetic state is determined by their size and the strength of an applied magnetic field. Numerical simulations were performed to study the effect of an applied field on the critical size of single-domain magnetic particles, and the critical field at which a particle becomes single-domain was determined.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Smart nanocomposite SrFe12O19/α or γ - Fe2O3 thin films with adaptive magnetic properties

Nitesh Singh, Naresh Kumar, Dharohar Sahadot, Anil Annadi, Vidyadhar Singh, Murtaza Bohra

Summary: The unique magnetic properties of FM/AFM and hard-FM/soft-FM nanocomposite thin films have significant relevance for numerous applications. The composition and performance of different magnetic phases in the nanocomposite films can be significantly affected by the laser ablation conditions and annealing temperature.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A symmetric T-H shape wideband negative index metamaterial for 28-GHz millimeter-wave applications

Alya Ali Musaed, Samir Salem Al-Bawri, Khaled Aljaloud, Wazie M. Abdulkawi, Mohammad Tariqul Islam, Mandeep Jit Singh, Zaini Sakawi, Husam Hamid Ibrahim

Summary: This research presents a wideband tunable metamaterial for body-centric applications in the millimeter-wave frequency band. The proposed metamaterial has a wide operating frequency range and enhanced gain, making it suitable for improving the antenna performance in 5G wireless communication systems.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure and properties of NdCuGa3 single crystals

Binod K. Rai, Boris Maiorov, Krzysztof Gofryk, Patrick O'Rourke, Catherine Housley, Henry Ajo, Asraf Sawon, Arjun K. Pathak, Narayan Poudel, Qiang Zhang, Travis J. Williams, Matthias Frontzek

Summary: This manuscript reports on the structural and magnetic properties of NdCuGa3. The study confirmed the crystal structure and magnetic phase transition of NdCuGa3 using XRD, neutron diffraction, magnetization, and specific heat measurements. The neutron diffraction data further confirmed the antiferromagnetic phase of NdCuGa3.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A multiferroic coupling mechanism in the polar interface region of GaN-ZnO heterojunction: A first-principle study

Haonan Li, Cong Li, Hailiang Huang, Guodong Hao, Fei Wang

Summary: The electronic structure and ferroelectric-ferromagnetic coupling properties of Y-doped and vacancy-containing GaN-ZnO heterojunctions are systematically investigated. The magnetism in vacancy-containing systems is generated by the spin polarization of unpaired electrons induced by cationic vacancies, while in Y-doped systems, bound magnetic polarons are formed by the orbital hybridization of s-state and d-state electrons of Y-doped elements.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

Muhammad Ijaz, Hafeez Ullah, Bandar Ali Al-Asbahi, Mati Ullah Khan, Zaheer Abbas, Sana Ullah Asif

Summary: M-type BaFe11.4-xAlxCo0.6O19 hexaferrites with Al3+ substitutions were synthesized using the co-precipitation method followed by Sonochemical process. The synthesized materials were characterized using XRD, FTIR, UV-vis spectroscopy, VSM, SEM, and LCR meter. The results showed that aluminum doping decreased the band gap and enhanced the magnetic and dielectric properties of the hexaferrites, making them suitable for various applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnons in the fan phase of anisotropic frustrated antiferromagnets

Oleg I. Utesov

Summary: The elementary excitations spectrum of anisotropic frustrated antiferromagnets in the fan phase is discussed. It is found that the low-energy part of the spectrum consists of a gapless phason branch with linear dispersion and a gapped optical branch corresponding to the fan structure amplitude oscillations. In the high-energy part of the spectrum, the excitations are similar to the magnons of the fully polarized phase.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Vapor bubbles departure frequency at ferrofluid boiling on a single nucleation site in a uniform horizontal magnetic field

Alexander Ya. Simonovskii, Alexander A. Yanovskii, Arthur R. Zakinyan

Summary: In this study, the departure frequency of vapor bubbles during boiling of ferrofluid in a horizontal magnetic field is experimentally investigated. Two methods, visual and inductive, are used to measure the frequency of bubble departure. The results show that the bubble departure frequency can decrease with increasing magnetic field strength and increase with increasing temperature of the heat-emitting surface. A linear stability analysis is conducted to analyze the influence of the magnetic field on the frequency of bubble formation during ferrofluid boiling.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnetic and transformation properties of Ni2MnGa combinatorically substituted with 5 at.% of transition elements from Cr to Cu - Experimental insight

Oleg Heczko, Michal Rames, Vit Kopecky, Petr Vertat, Michal Varga, Ladislav Straka

Summary: Heusler Ni-Mn-Ga alloys are multiferroic materials that exhibit magnetic shape memory (MSM) phenomena. By doping transition elements into Ni2MnGa alloys, the transformation temperatures can be modified and complex behaviors can be observed, such as the variation in saturation magnetization and the effects of elemental substitution on compound properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

DFT calculations for electronic and magnetic properties of full Heusler Fe2MnAs alloy in perfect and defect structures

Carlos Ariel Samudio Perez, Ariel Flaig de Marchi

Summary: This study investigates the electronic and magnetic properties of the Full-Heusler Fe2MnAs alloy using first-principles calculations. The alloy may form spontaneously and exhibits a ferromagnetic order and high spin-polarization. It can be transformed into a half-metal by contracting the lattice constant. Additionally, certain defects contribute to the spin-polarization of the alloy, making it a fully half-metallic material.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Enhancing electromagnetic properties through carbon Nanotube-Based polymer composites

Satish Geeri, Aditya Kolakoti, Prasadarao Bobbili

Summary: In this study, an electromagnetic wave-absorbing material was fabricated using a polymer composite material with fiber orientation and Multiwall Carbon Nanotubes as filler materials, along with a Perfect Electric Conducting material. The experiments demonstrated strong electromagnetic absorbing properties for the composites with PEC-coated and non-PEC-coated materials. Mechanical, thermal, and morphological analysis confirmed the similar trend in properties. CRITIC analysis helped identify the sequence order of sustaining properties for the fabricated composites.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

First-principles prediction of intrinsic piezoelectricity, spin-valley splitting and magneto-crystal anisotropy in 2H-VS2 magnetic semiconductor

Yankai Chen, Ruoxue Zhang, Yukai An

Summary: The piezoelectricity, valley character, and magnetic properties of 2H-VS2 monolayer were studied, revealing its potential applications in spintronics and valleytronics due to its bipolar magnetic semiconductor characteristics and superior physical properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Thermodynamic, entanglement and spin Hall conductivity on kagome-honeycomb lattice system

Leonardo S. Lima

Summary: This study investigates the thermodynamic quantities, such as entropy, specific heat, and magnetic susceptibility, in the next-nearest-neighbors Heisenberg model on a honeycomb-kagome lattice. The linear spin-wave approach is applied to obtain the temperature-dependent behavior of these quantities. Additionally, the entanglement negativity, a quantifier of quantum entanglement, and the spin Hall conductivity are also studied. The results show that all the thermodynamic quantities, as well as the entanglement negativity and spin Hall conductivity, exhibit an increasing trend with temperature. Furthermore, it is found that all the analyzed quantities approach zero in the low-temperature limit, consistent with experimental observations.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Large conventional and inverse magnetocaloric effects in RE2Ga2Mg (RE = Tm, Er, Ho) compounds

Zhaoxing Wang, Maximilian Kai Reimann, Wang Chen, Yikun Zhang, Rainer Poettgen

Summary: The Mo2FeB2-type compounds RE2Ga2Mg (RE = Tm, Er, Ho) exhibit a large magnetocaloric effect, making them promising for cryogenic magnetic cooling applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)