4.5 Article

Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

Journal

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
Volume 324, Issue 5, Pages 742-754

Publisher

ELSEVIER
DOI: 10.1016/j.jmmm.2011.09.008

Keywords

Magnetic nanoparticle; Targeted drug deliver; Magnetic drug targeting; Optimal permanent magnet; Nano-particle trapping; Pushing nanoparticle; Halbach array design

Funding

  1. NCRR NIH HHS [R21 RR026228, R21 RR026228-01] Funding Source: Medline

Ask authors/readers for more resources

Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a 5 x greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (<= 1 T), size (<= 2000 cm(3)), and number of elements (<= 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors <= 5 degrees), thus yielding practical designs to improve magnetic drug targeting treatment depths. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available